Advertisement

BIT Numerical Mathematics

, Volume 26, Issue 4, pp 475–492 | Cite as

Unrestricted algorithms for reciprocals and square roots

  • C. W. Clenshaw
  • F. W. J. Olver
Part II Numerical Mathematics

Abstract

Algorithms are presented for the computation of reciprocals of nonzero real numbers and square roots of positive numbers. There are no restrictions on the range of the numbers or on the precision that may be demanded in the results.

1980 Mathematics Subject Classification

Primary 65D20 

Keywords

Computer arithmetic error analysis multiple-precision software relative precision unrestricted alborithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Brent,Multiple-precision zero-finding methods and the complexity of elementary function evaluation. InAnalytic Computational Complexity (Edited by J. F. Traub), Academic Press, New York, 1976, pp. 151–176.Google Scholar
  2. 2.
    R. P. Brent,The complexity of multiple-precision arithmetic. InThe Complexity of Computational Problem Solving (Edited by R. S. Anderssen and R. P. Brent), University of Queensland Press, Brisbane, 1976, pp. 126–165.Google Scholar
  3. 3.
    R. P. Brent,A Fortran multiple-precision arithmetic package, ACM Trans. Math. Softw., 4 (1978), pp. 57–70.Google Scholar
  4. 4.
    R. P. Brent,Algorithm 524. MP, A Fortran multiple-precision arithmetic package, ACM Trans. Math. Softw., 4 (1978), pp. 71–81.Google Scholar
  5. 5.
    C. W. Clenshaw and F. W. J. Olver,An unrestricted algorithm for the exponential function, SIAM J. Numer. Anal., 17 (1980), pp. 310–331.Google Scholar
  6. 6.
    C. W. Clenshaw and F. W. J. Olver,Beyond floating point, J. Assoc. Comput. Mach., 31 (1984), pp. 319–328.Google Scholar
  7. 7.
    C. W. Clenshaw and F. W. J. Olver,Level-index arithmetic operations, SIAM J. Numer. Anal. [In Press.]Google Scholar
  8. 8.
    T. E. Hull and A. Abrham,Properly rounded variable precision square root, ACM Trans. Math. Softw., 11 (1985), pp. 229–237.Google Scholar
  9. 9.
    F. W. J. Olver,A new approach to error arithmetic, SIAM J. Numer. Anal., 15 (1978), pp. 368–393.Google Scholar
  10. 10.
    F. W. J. Olver,Further developments of rp and ap error analysis, IMA J. Numer. Anal., 2 (1982), pp. 249–274.Google Scholar
  11. 11.
    J. M. Yohe,Interval bounds for square roots and the cube roots, Computing, 11 (1973), pp. 51–57.Google Scholar

Copyright information

© BIT Foundations 1986

Authors and Affiliations

  • C. W. Clenshaw
    • 1
    • 2
  • F. W. J. Olver
    • 1
    • 2
    • 3
  1. 1.Department of MathematicsThe University of LancasterLancasterU.K.
  2. 2.Institute for Physical Science and TechnologyThe University of MarylandCollege ParkU.S.A.
  3. 3.National Bureau of StandardsGaithersburgU.S.A.

Personalised recommendations