Advertisement

BIT Numerical Mathematics

, Volume 28, Issue 1, pp 88–97 | Cite as

A fourth order method for a singular two-point boundary value problem

  • M. M. Chawla
  • R. Subramanian
  • H. L. Sathi
Part II Numerical Mathematics

Abstract

Recently, Chawla et al. described a second order finite difference method for the class of singular two-point boundary value problems:
$$y'' + (\alpha /x)y' + f(x,y) = 0, 0< x< 1, y'(0) = 0, y(1) = A, \alpha \geqslant 1.$$
No higher order finite difference method has been given so far. In the present paper we give a fourth order finite difference method for all α ≥ 1.

AMS Categories

65L10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. F. Ames,Nonlinear Ordinary Differential Equations in Transport Process, Academic Press, New York, 1968.Google Scholar
  2. 2.
    D. C. Brabston and H. B. Keller,A numerical method for singular two-point boundary value problems, SIAM J. Numer. Anal., 14 (1977), 779–791.Google Scholar
  3. 3.
    P. L. Chambré,On the solution of the Poisson-Boltzmann equation with the application to the theory of thermal explosions, J. Chem. Phys., 20 (1952), 1795–1797.Google Scholar
  4. 4.
    S. Chandrasekhar,An Introduction to the Study of Stellar Structure, Dover, New York, 1939.Google Scholar
  5. 5.
    M. M. Chawla and C. P. Katti,A finite-difference method for a class of singular two-point boundary value problems, IMA J. Numer. Anal., 4 (1984), 457–466.Google Scholar
  6. 6.
    M. M. Chawla, S. McKee and G. Shaw,Order h 2 method for a singular two-point boundary value problem, BIT, 26 (1986), 318–326.Google Scholar
  7. 7.
    P. G. Ciarlet, F. Natterer and R. S. Varga,Numerical methods of high-order accuracy for singular nonlinear boundary value problems, Numer. Math., 15 (1970), 87–99.Google Scholar
  8. 8.
    K. Eriksson and V. Thomée,Galerkin methods for singular boundary value problems in one space dimension, Math. Comp., 42 (1984), 345–367.Google Scholar
  9. 9.
    F. R. de Hoog and R. Weiss,On the boundary value problem for systems of ordinary differential equations with a singularity of second kind, SIAM J. Math. Anal., 11 (1980), 41–60.Google Scholar
  10. 10.
    P. Jamet,On the convergence of finite difference approximations to one-dimensional singular boundary value problems, Numer. Math., 14 (1970), 355–378.Google Scholar
  11. 11.
    D. Jespersen,Ritz-Galerkin method for singular boundary value problems, SIAM J. Numer. Anal., 15 (1978), 813–834.Google Scholar
  12. 12.
    J. B. Keller,Electrohydrodynamics I.The equilibrium of a charged gas in a container, J. Rational Mech. Anal., 5 (1956), 715–724.Google Scholar
  13. 13.
    S. V. Parter,Numerical methods for generalised axially symmetric potentials, SIAM J., Ser. B, 2 (1965), 500–516.Google Scholar
  14. 14.
    R. D. Russell and L. F. Shampine,Numerical methods for singular boundary value problems, SIAM J. Numer. Anal., 12 (1975), 13–36.Google Scholar

Copyright information

© BIT Foundations 1988

Authors and Affiliations

  • M. M. Chawla
    • 1
  • R. Subramanian
    • 1
  • H. L. Sathi
    • 2
  1. 1.Department of MathematicsIndian Institute of TechnologyNew DelhiIndia
  2. 2.Department of Computer Science TechnologyUniversity of Southern ColoradoPuebloU.S.A.

Personalised recommendations