Advertisement

BIT Numerical Mathematics

, Volume 24, Issue 1, pp 2–13 | Cite as

Some performance tests of convex hull algorithms

  • D. C. S. Allison
  • M. T. Noga
Part I Computer Science

Abstract

The two-dimensional convex hull algorithms of Graham, Jarvis, Eddy, and Akl and Toussaint are tested on four different planar point distributions. Some modifications are discussed for both the Graham and Jarvis algorithms. Timings taken of FORTRAN implementations indicate that the Eddy and Akl-Toussaint algorithms are superior on uniform distributions of points in the plane. The Graham algorithm outperforms the others on those distributions where most of the points are on or near the boundary of the hull.

Keywords

Convex hull computational geometry sorting distributive partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Aho, J. E. Hopcroft and J.D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. (1974).Google Scholar
  2. 2.
    S. G. Akl and G. T. Toussaint,Personal communication.Google Scholar
  3. 3.
    S. G. Akl,Two remarks on a convex hull algorithm, Info. Proc. Lett. 8, no. 2 (1979), 108–109.CrossRefGoogle Scholar
  4. 4.
    S. G. Akl and G. T. Toussaint,A fast convex hull algorithm, Info. Proc. Lett. 7, no. 5 (1978), 219–222.CrossRefGoogle Scholar
  5. 5.
    D. C. S. Allison and M. T. Noga,Usort: an efficient hybrid of distributive partitioning sort, BIT 22, (1982), 136–139.Google Scholar
  6. 6.
    K. R. Anderson,A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set, Info. Proc. Lett. 7, no. 1 (1978), 53–55.CrossRefGoogle Scholar
  7. 7.
    A. Bykat,Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7, no. 6 (1978), 297–298.Google Scholar
  8. 8.
    W. F. Eddy,A new convex hull algorithm for planar sets, ACM Trans. on Math. Soft. 3, no. 4 (1977) 398–403.CrossRefGoogle Scholar
  9. 9.
    W. F. Eddy,Algorithm 523 CONVEX, a new convex hull algorithm for planar sets, Collected Algorithms from ACM, (1977), 523P1–523P6.Google Scholar
  10. 10.
    R. L. Graham,An efficient algorithm for determining the convex hull of a finite planar set, Info. Proc. Lett. 1, no. 1 (1972), 132–133.CrossRefGoogle Scholar
  11. 11.
    P. J. Green and B. W. Silverman,Constructing the convex hull of a set of points in the plane, The Computer Journal 22, no. 3 (1978), 262–266.CrossRefGoogle Scholar
  12. 12.
    R. A. Jarvis,On the identification of the convex hull of a finite set of points in the plane, Info. Proc. Lett. 2, no. 1 (1973), 18–21.CrossRefGoogle Scholar
  13. 13.
    H. Meijer and S. G. Akl,The design and analysis of a new hybrid sorting algorithm, Info. Proc. Lett. 10, no. 4–5 (1980), 213–218.CrossRefGoogle Scholar
  14. 14.
    M. T. Noga,Convex Hull Algorithms, Masters Thesis, Dept. of Comp. Sci., Virginia Polytechnic Institute and State University, Blacksburg, VA, (1981).Google Scholar
  15. 15.
    H. Raynaud,Sur l'enveloppe convexe des nuages des points aleatoires dans R, Appl. Prob. 7, (1970), 35–48.Google Scholar
  16. 16.
    A. Renyi and R. Rulanke,Zufällige konvexe Polygone in einem Ringgebiet, Z. Wahrscheinlichkeits 9, (1968), 146–157.CrossRefGoogle Scholar
  17. 17.
    J. Sklansky,Measuring concavity on a rectangular mosaic, IEEE Trans. on Computers C-21, no. 12 (1972), 1355–1362.Google Scholar
  18. 18.
    A. C. Yao,A lower bound to finding convex hulls, JACM 28, no. 4 (1981), 780–787.CrossRefGoogle Scholar

Copyright information

© BIT Foundations 1984

Authors and Affiliations

  • D. C. S. Allison
    • 1
  • M. T. Noga
    • 1
  1. 1.Department of Computer ScienceVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations