Mathematische Annalen

, Volume 294, Issue 1, pp 225–234 | Cite as

Conjugation of Kuga fiber varieties

  • Salman Abdulali
Article
  • 53 Downloads

Mathematics Subject Classification (1991)

11G18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulali, S.: Zeta functions of Kuga fiber varieties. Duke Math. J.57, 333–345 (1988)CrossRefGoogle Scholar
  2. 2.
    Abdulali, S.: Fields of definition for some Hodge cycles. Math. Ann.285, 289–295 (1989)CrossRefGoogle Scholar
  3. 3.
    Addington, S.: Equivariant holomorphic maps of symmetric domains. Duke Math. J.55, 65–88 (1987)CrossRefGoogle Scholar
  4. 4.
    Borel, A.: Density and maximality of arithmetic subgroups. J. Reine Angew. Math.224, 78–89 (1966)Google Scholar
  5. 5.
    Borel, A.: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differ. Geom.6, 543–560 (1972)Google Scholar
  6. 6.
    Deligne, P. (notes by Milne, J.S.): Hodge cycles on abelian varieties. In: Deligne, P., Milne, J.S., Ogus, A., Shih, K.-y.: Hodge cycles, motives, and Shimura varieties. (Lect. Notes Math., vol. 900, pp. 9–100) Berlin Heidelberg New York: Springer 1982Google Scholar
  7. 7.
    Kuga, M.: Fiber varieties over a symmetric space whose fibers are abelian varieties I, Lect. Notes, Univ. Chicago 1964Google Scholar
  8. 8.
    Mumford, D.: Families of abelian varieties. In: Algebraic groups and discontinuous subgroups. (Proc. Symp. Pure Math. vol. 9, pp. 347–351) Providence: American Mathematical Society 1966Google Scholar
  9. 9.
    Mumford, D.: A note of Shimura's paper “Discontinuous groups and abelian varieties.” Math. Ann.181, 345–351 (1969)CrossRefGoogle Scholar
  10. 10.
    Petri, M.: Arithmetic classification of Kuga fiber varieties of quaternion type. Duke Math. J.58, 469–498 (1989)CrossRefGoogle Scholar
  11. 11.
    Reiner, I.: Maximal orders. London: Academic Press 1975Google Scholar
  12. 12.
    Satake, I.: Algebraic structures of symmetric domains. (Pub. Math. Soc. Japan 14) Princeton: Princeton University Press 1980Google Scholar
  13. 13.
    Shimura, G.: On analytic families of polarized abelian varieties and automorphic functions. Ann. Math.78, 149–192 (1963)Google Scholar
  14. 14.
    Shimura, G.: On the field of definition of a field of automorphic functions. Ann. Math.80, 160–189 (1964)Google Scholar
  15. 15.
    Shimura, G.: Class-fields and automorphic functions. Ann. Math.80, 444–463 (1964)Google Scholar
  16. 16.
    Shimura, G.: Moduli of abelian varieties and number theory. In: Algebraic groups and discontinuous subgroups. (Proc. Symp. Pure Math. vol. 9, pp. 312–332) Providence: American Mathematical Society 1966Google Scholar
  17. 17.
    Shimura, G.: Moduli and fibre systems of abelian varieties. Ann. Math.83, 294–338 (1966)Google Scholar
  18. 18.
    Shimura, G.: On the field of definition for a field of automorphic functions: III. Ann. Math.83, 377–385 (1966)Google Scholar
  19. 19.
    Shimura, G.: Algebraic varieties without deformation and the Chow variety. J. Math. Soc. Japan20, 336–341 (1968)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Salman Abdulali
    • 1
  1. 1.Department of Mathematics/Computer ScienceClark UniversityWorcesterUSA

Personalised recommendations