Advertisement

Mathematische Annalen

, Volume 294, Issue 1, pp 59–80 | Cite as

The normalizer of the Weyl group

  • Jesper Michael Møller
Article

Mathematics Subject Classification (1991)

55P15 55P10 55P60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-M]
    Adams, J.F., Mahmud, Z.: Maps between classifying spaces. Invent. Math.35, 1–41 (1976)CrossRefGoogle Scholar
  2. [A-W]
    Adams, J.F., Wojtkowiak, Z.: Maps betweenp-completed classifying spaces. Proc. R. Soc. Edinb.112a, 231–235 (1989)Google Scholar
  3. [B]
    Bourbaki, N.: Groupes et algébres de Lie, Chaps. 4–6. Paris: Hermann 1968Google Scholar
  4. [B-tD]
    Bröcker, T., tom Dieck, T.: Representations of compact Lie groups. (Grad. Texts Math., vol. 98) Berlin Heidelberg New York: Springer 1985Google Scholar
  5. [G-M]
    Glover, H.H., Mislin, G.: On the genus of generalized flag manifolds. Enseign. Math.27, 211–219 (1981)Google Scholar
  6. [H]
    Humphreys, J.E.: Introduction to Lie algebras and representation theory. (Grad. Texts Math., vol. 9) Berlin Heidelberg New York: Springer 1972Google Scholar
  7. [I]
    Iwase, N.: On the splitting of mapping spaces between classifying spaces I. Publ. Res. Ins. Math. Sci.23, 445–453 (1987)Google Scholar
  8. [JMO1]
    Jackowski, S., McClure, J., Oliver, R.: Homotopy classification of self-maps ofBG viaG-actions. Ann. Math. II. Ser.135, 183–226, 227–270 (1992)Google Scholar
  9. [JMO2]
    Jackowski, S., McClure, J., Oliver, R.: Homotopy theory of classifying spaces of compact Lie groups. (Preprint)Google Scholar
  10. [JMO3]
    Jackowski, S., McClure, J., Oliver, R.: Self homotopy equivalences ofBG. (Preprint)Google Scholar
  11. [M-M1]
    McGibbon, C.A., Møller, J.M.: On spaces with the samen-type for alln. Topology31, 177–201 (1992)CrossRefGoogle Scholar
  12. [M-M2]
    McGibbon, C.A., Møller, J.M.: How can you tell two spaces apart when they have the samen-type for alln? In: Proceedings of the Adams Memorial Conference (to appear)Google Scholar
  13. [N-S]
    Notbohm, D., Smith, L.: Fake Lie groups and maximal tori. I. Math. Ann.288, 637–661 (1990)CrossRefGoogle Scholar
  14. [P]
    Papadima, S.: Rigidity properties of compact Lie groups modulo maximal tori. Math. Ann.275, 637–652 (1986)CrossRefGoogle Scholar
  15. [R]
    Rector, D.: Loop structures on the homotopy type ofS 3. In: Hilton, P. (ed.) Symposium on Algebraic Topology. Berlin Heidelberg New York: Springer 1971Google Scholar
  16. [S]
    Serre, J.-P.: Cours d'Arithmétique. Paris: Presses Universitaires de France 1970Google Scholar
  17. [Wi]
    Wilkerson, C.W.: Applications of minimal simplicial groups. Topology15, 111–130 (1976)CrossRefGoogle Scholar
  18. [W1]
    Wojtkowiak, Z.: Maps fromBπ intoX. Q. J. Math., Oxf. II. Ser.39, 117–127 (1988)Google Scholar
  19. [W2]
    Wojtkowiak, Z.: Maps betweenp-completed classifying spaces II. Proc. R. Soc. Edinb.118A, 133–137 (1991)Google Scholar
  20. [W3]
    Wojtkowiak, Z.: A remark on self-maps ofp-completed classifying spaces: Aplicaciones entre espacios clasificantes, Universitat Autònoma de Barcelona, 1989Google Scholar
  21. [W4]
    Wojtkowiak, Z.: A remark on maps between classifying spaces of compact Lie groups. Can. Math. Bull.31, 452–458 (1988)Google Scholar
  22. [Z]
    Zabrodsky, A.:p-equivalences and homotopy type. In: Hilton, P. (ed.) Localization in group theory and homotopy theory. Berlin Heidelberg New York: Springer 1974Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Jesper Michael Møller
    • 1
  1. 1.Matematisk InstitutKøbenhavn ØDenmark

Personalised recommendations