Experientia

, Volume 33, Issue 12, pp 1656–1657 | Cite as

Methemoglobin in hypoxic rats

  • C. P. Olander
  • C. E. ParrJr
Specialia Haematologica, Immunologica

Summary

Methemoglobin levels have been found to vary with altitude and to shift the hemoglobin-oxygen dissociation curve. In this study, hematocrits and methemoglobin levels were monitored in rats exposed to hypoxia (420 torr absolute) for various intervals. Hematocrits gradually increased throughout the period of hypoxia, while methemoglobin levels rose by 12 h, peaked at 24 h and returned to control level by day 6. These data, in the context of other work, suggest that increased methemoglobin is important in acclimation to hypoxia.

Keywords

Dissociation Curve Methemoglobin Level 

Literatur

  1. 3.
    J. W. Eaton, G. J. Brewer and R. F. Grover, J. Lab. clin. Med.73, 603 (1969).PubMedGoogle Scholar
  2. 4.
    C. Lenfant, J. Torrance, E. English, C. A. Finch, C. Reynafarje, J. Ramos and J. Faura, J. clin. Invest.47, 2652 (1968).PubMedGoogle Scholar
  3. 5.
    P. W. Rand, J. M. Norton, N. D. Barker, M. D. Lovell and W. H. Austin, J. appl. Physiol.34, 827 (1973).PubMedGoogle Scholar
  4. 6.
    G. J. Brewer, A. Rev. Med.25, 20 (1974).Google Scholar
  5. 7.
    A. Arnone, Nature237, 146 (1972).PubMedGoogle Scholar
  6. 8.
    G. Duc and K. Engel, Scand. J. clin. Lab. Invest.24, 405 (1969).PubMedGoogle Scholar
  7. 9.
    R. W. Bullard, in: Physiological Adaptations: Desert and Mountain, p. 209. Ed. M. K. Yousef, S. M. Horvath and R. W. Bullard, Academic Press, New York 1972.Google Scholar
  8. 10.
    J. W. Eaton, Ann. N. Y. Acad. Sci.241, 491 (1974).PubMedGoogle Scholar
  9. 11.
    C. A. Finch, New Engl. J. Med.239, 470 (1948).Google Scholar
  10. 12.
    R. C. Darling and F. J. W. Roughton, Am. J. Physiol.137, 56 (1942).Google Scholar
  11. 13.
    D. Gourdin, H. Vergnes and N. Gutierez, Br. J. Haemat.29, 243 (1975).Google Scholar
  12. 14.
    K. A. Evelyn and H. T. Malloy, J. biol. Chem.126, 655 (1938).Google Scholar
  13. 15.
    J. M. Vandenbelt, C. Pfeiffer, M. Kaiser and M. Sibert, J. Pharmac. exp. Ther.80, 31 (1944).Google Scholar
  14. 16.
    R. H. Meints and C. P. Olander, Comp. Biochem. Physiol.34, 901 (1970).Google Scholar
  15. 17.
    E. Neĉas and J. Neuwirt, Blood36, 754 (1970).PubMedGoogle Scholar
  16. 18.
    C. P. Olander, Am. J. Physiol.222, 45 (1972).PubMedGoogle Scholar
  17. 19.
    J. F. Camiscoli and A. S. Gordon, in: Regulation of Hematopoiesis, p. 369. Ed. A. S. Gordon. Appleton-Century-Crofts, New York 1970.Google Scholar
  18. 20.
    M. E. Hrinda and E. Goldwasser, Biochim. biophys. Acta195, 165 (1969).PubMedGoogle Scholar
  19. 21.
    E. L. Alpen and D. Cranmore, in: The Kinetics of Cellular Proliferation, p. 290. Ed. F. Stohlman, Jr, Grune and Stratton, New York 1959.Google Scholar
  20. 22.
    E. R. Jaffé, in: Biochemical Methods in Red Cell Genetics, p. 231. Ed. J. J. Junis. Academic Press, New York 1969.Google Scholar
  21. 23.
    E. R. Jaffé, in: The Red Blood Cell, p. 397. Ed. C. Bishop and D. M. Surgenor, Academic Press, New York 1964.Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • C. P. Olander
    • 1
  • C. E. ParrJr
    • 1
  1. 1.Department of BiologyAustin CollegeShermanUSA

Personalised recommendations