, Volume 32, Issue 8, pp 949–963 | Cite as

Theories of enzyme specificity and their application to proteases and aminoacyl-Transfer RNA synthetases

  • H. R. Bosshard


The question of enzyme specificity which is a corollary of the phenomenon of biological recognition is reviewed. The following theories are outlined briefly: non-productive binding, induced fit, transition state binding, the general strain theory and the kinetic proofreading hypothesis. Data on proteolytic enzymes and aminoacyl-tRNA synthetases are discussed in the light of predictions made by the various theories. The specificity of inhibitor and substrate binding to chymotrypsin and subtilisins is revealed at the sub-molecular level as an example of binding specificity. Kinetic specificity is experimentally distinguished from binding specificity. Conformational adaptability of enzyme and substrate, which is crucial in some theories, is documented by data on aminoacyl-tRNA synthetases. Expected and observed specificity of tRNA charging is discussed with regard to a theoretical limit of specificity. Additional means seem necessary beside those contained in the isolated enzyme-substrate system to account for the high specificity of most synthetases. In conclusion, we have arrived at quite good explanations for moderate specificity such as is displayed by many proteases, but there are still ample difficulties in the understanding of highly specific enzyme reactions.


Binding Specificity Chymotrypsin Moderate Specificity Theoretical Limit State Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    D. R. Storm andD. F. Koshland, Jr., Proc. natn. Acad. Sci., USA66, 445 (1970).Google Scholar
  2. 3.
    J. F. Kirsch, A. Rev. Biochem.42, 205 (1973).CrossRefGoogle Scholar
  3. 4.
    W. P. Jencks, Adv. Enzymol.43, 219 (1975).PubMedGoogle Scholar
  4. 5.
    K. J. Laidler,The Chemical Kinetics of Enzyme Action (Clarendon Press, Oxford 1958).Google Scholar
  5. 6.
    W. P. Jencks,Catalysis in Chemistry and Enzymology (McGraw-Hill, New York 1969).Google Scholar
  6. 7.
    H. A. Scheraga andM. Laskowski Jr., Adv. Protein Chem.12, 1 (1957).Google Scholar
  7. 8.
    D. Nathans andH. O. Smith, A. Rev. Biochem.44, 273 (1975).CrossRefGoogle Scholar
  8. 9.
    R. B. Loftfield andD. Vanderjagt, Biochem. J.128, 1353 (1972).PubMedGoogle Scholar
  9. 10.
    E. Fischer, Chem. Ber.27, 2985 (1894).Google Scholar
  10. 11.
    P. Ehrlich, in:Collected Papers (Ed.F. Himmelweit; Pergamon, London-New York 1960), vol. 3, p. 561.Google Scholar
  11. 12.
    It is important that the 2 substrates compete for the enzyme simultaneously. If, for example, there is no difference ink cat but only in KB, then each substrate, when tested alone, will be turned over at the same rate at saturating concentration.Google Scholar
  12. 13.
    M. L. Bender, F. J. Kézdy andC. R. Gunter, J. Am. Chem. Soc.86, 3714 (1964).CrossRefGoogle Scholar
  13. 14.
    C. L. Hamlton, C. Niemann andG. S. Hammond, Proc. natn. Acad. Sci., USA55, 664 (1966).Google Scholar
  14. 15.
    It has been pointed out by a referee that multiple-binding can occur in 2 ways: a) the substrate binds to the enzyme in one mode, comes off again and diffuses back to be bound in a second mode. b) The substrate binds to the enzyme and oscillates between different modes of binding constants case a) is formally treated here. But I am not aware of any experiments that would rigorously differentiate between a) and b).Google Scholar
  15. 16.
    H. Theorell, Harvey Lectures, Series61, 17 (1967).Google Scholar
  16. 17.
    D. E. Koshland Jr., Proc. natn. Acad. Sci. USA44, 98 (1958).Google Scholar
  17. 18.
    N. Citri, Adv. Enzymol.37, 397 (1973).PubMedGoogle Scholar
  18. 19.
    L. Pauling, Chem. Eng. News24, 1375 (1946).Google Scholar
  19. 20.
    R. Wolfenden, Acc. chem. Res.5, 10 (1972).CrossRefGoogle Scholar
  20. 21.
    G. E. Lienhard, Science180, 149 (1973).PubMedGoogle Scholar
  21. 22.
    R. Lumry, Ann. N. Y. Acad. Sci.227, 46 (1974).PubMedGoogle Scholar
  22. 23.
    J. Monod, J. Wyman andJ.-P. Changeux, J. molec. Biol.6, 306 (1963).PubMedGoogle Scholar
  23. 24.
    D. E. Koshland Jr., G. Nemethy andD. Filmer, Biochemistry5, 365 (1966).PubMedGoogle Scholar
  24. 25.
    J. J. Hopfield, Proc. natn. Acad. Sci. USA71, 4135 (1974).Google Scholar
  25. 26.
    H. J. Mueller-Eberhard, A. Rev. Biochem.44, 697 (1975).CrossRefGoogle Scholar
  26. 27.
    I. Schechter andA. Berger, Biochem. biophys. Res. Commun.27, 157 (1967).CrossRefPubMedGoogle Scholar
  27. 28.
    A. Berger andI. Schechter, Phil. Trans. R. Soc. London Ser. B257, 249 (1970).Google Scholar
  28. 29.
    A. Berger, I. Schechter, H. Benderly andN. Kurn, inPeptides 1969 (North Holland Publ. Co., Amsterdam 1971), p. 290.Google Scholar
  29. 30.
    H. R. Bosshard andA. Berger, Biochemistry13, 266 (1974).CrossRefPubMedGoogle Scholar
  30. 31.
    Z, benzyloxycarbonyl; Ac, acetyl; abbreviations of amino acids and peptides according to IUPAC-IUB rules, J. biol. Chem.247, 977 (1972).Google Scholar
  31. 32.
    T. A. Steitz, R. Henderson andD. M. Blow, J. molec. Biol.46, 337 (1969).CrossRefPubMedGoogle Scholar
  32. 33.
    C. S. Wright, R. A. Alden andJ. Kraut, Nature, Lond.221, 235 (1969).Google Scholar
  33. 34.
    H. R. Bosshard, I. Pecht, N. Kurn andA. Berger, 9th Int. Congr. Biochem., Stockholm (1973), Abstract Book, p. 46.Google Scholar
  34. 35.
    B. S. Hartley, Phil. Trans. R. Soc. London, Ser. B257, 77 (1970).Google Scholar
  35. 36.
    E. L. Smith, R. J. de Lange, W. H. Evans, M. Landon andF. S. Markland, J. biol. Chem.243, 2184 (1968).PubMedGoogle Scholar
  36. 37.
    J. Kraut, inThe Enzymes (Ed.P. D. Boyer; Academic Press, New York 1971), vol. 3, p. 547.Google Scholar
  37. 38.
    H. R. Bosshard, FEBS Lett.30, 105 (1973).CrossRefPubMedGoogle Scholar
  38. 39.
    J. D. Robertus, J. Kraut, R. A. Alden andJ. J. Birktoft, Biochemistry11, 4293 (1972).CrossRefPubMedGoogle Scholar
  39. 40.
    D. M. Segal, J. C. Powers, G. H. Cohen, D. R. Davies andP. E. Wilcox, Biochemistry10, 3728 (1971).CrossRefPubMedGoogle Scholar
  40. 41.
    J. A. Shellman, C. r. Trav. Lab. Carlsberg, Serv. Chim.29, 223 (1955).Google Scholar
  41. 42.
    I. M. Klotz andJ. S. Franzen, J. Am. chem. Soc.84, 3461 (1962).CrossRefGoogle Scholar
  42. 43.
    C. Chothia andJ. Janin, Nature, Lond.256, 705 (1975).Google Scholar
  43. 44.
    C. J. Garratt andD. M. Harrison, FEBS Lett.11, 17 (1970).CrossRefPubMedGoogle Scholar
  44. 45.
    A. P. Damoglou, H. Lindley andI. W. Stapleton, Biochem. J.118, 553 (1970).PubMedGoogle Scholar
  45. 46.
    J. R. Knowles, J. theor. Biol.9, 213 (1965).CrossRefPubMedGoogle Scholar
  46. 47.
    S. A. Bizzozero, W. K. Baumann andH. Dutler, Eur. J. Biochem.58, 167 (1975).CrossRefPubMedGoogle Scholar
  47. 48.
    K. Inouye andJ. S. Fruton, Biochemistry6, 1765 (1967).CrossRefPubMedGoogle Scholar
  48. 49.
    J. S. Fruton, Adv. Enzymol.33, 401 (1970).PubMedGoogle Scholar
  49. 50.
    D. Atlas, J. molec. Biol.93, 39 (1975).CrossRefPubMedGoogle Scholar
  50. 51.
    K. Morihara, T. Oka andH. Tsuzuki, Arch. Biochem. Biophys.138, 515 (1970).CrossRefPubMedGoogle Scholar
  51. 52.
    A. Ito, K. Tokawa andB. Shimizu, Biochem. biophys. Res. Commun.49, 343 (1972).CrossRefPubMedGoogle Scholar
  52. 53.
    J. Fastrez andA. R. Fersht, Biochemistry12, 1067 (1973).PubMedGoogle Scholar
  53. 54.
    K. E. B. Platzer, F. A. Momany andH. A. Scheraga, Int. J. Pept. Protein Res.4, 201 (1972).PubMedGoogle Scholar
  54. 55.
    H. R. Bosshard, FEBS Lett.38, 139 (1974).CrossRefGoogle Scholar
  55. 56.
    H. R. Bosshard, Israel J. Chem.12, 495 (1974).Google Scholar
  56. 57.
    L. L. Kisselev andO. O. Favorova, Adv. Enzymol.40, 141 (1974).PubMedGoogle Scholar
  57. 58.
    R. B. Loftfield, Progr. nucl. Acid. Res. molec. Biol.12, 87 (1972).Google Scholar
  58. 59.
    Reactions between tRNA's and synthetases from different organisms are called ‘heterologous’ as compared to ‘homologous’ for the reaction between enzyme and substrate of the same origin.Google Scholar
  59. 60.
    R. Giegé, D. Kern, J. P. Ebel, H. Grosjean, S. De Henau andH. Chantrenne, Eur. J. Biochem.45, 351 (1974).CrossRefPubMedGoogle Scholar
  60. 61.
    The superscript in tRNAMet etc. indicates the amino acid which the tRNA is mainly specific for. Charging according to this main specificity by the corresponding synthetase is called ‘cognate’, thus valyl-tRNA synthetase and tRNAVal is a cognate pair. The term ‘non-cognate’ is self-explanatory. Cognate and non-cognate charging can of course be homologous as well as heterologous.Google Scholar
  61. 62.
    J. P. Ebel, R. Giegé, J. Bonnet, D. Kern, N. Befort, C. Bollack, F. Fasiolo, J. Gangloff andG. Dirheimer, Biochimie55, 347 (1973).Google Scholar
  62. 63.
    J. Bonnet andJ. P. Ebel, FEBS Lett.39, 259 (1974).CrossRefPubMedGoogle Scholar
  63. 64.
    J. Flossdorf andM. G. Kula, Eur. J. Biochem.36, 534 (1973).CrossRefPubMedGoogle Scholar
  64. 65.
    G. C. Lepore, P. di Natale, L. Guarini andF. de Lorenzo, Eur. J. Biochem.56, 369 (1975).CrossRefPubMedGoogle Scholar
  65. 66.
    F. Lawrence, D. J. Shire andJ. P. Waller, Eur. J. Biochem.41, 73 (1974).CrossRefPubMedGoogle Scholar
  66. 67.
    H. J. P. Schoemaker andP. R. Schimmel, J. molec. Biol.84, 503 (1974).CrossRefPubMedGoogle Scholar
  67. 68.
    G. P. Budzik, S. M. M. Lam, H. J. P. Schoemaker andP. R. Schimmel, J. biol. Chem.250, 4433 (1975).PubMedGoogle Scholar
  68. 69.
    H. J. P. Schoemaker, G. P. Budzik, R. Giegé andP. R. Schimmel, J. biol. Chem.250, 4440 (1975).PubMedGoogle Scholar
  69. 70.
    J. D. Robertus, J. E. Ladner, J. T. Finck, D. Rhodes, R. S. Brown, B. F. C. Clark andA. Klug, Nature, Lond.250, 546 (1974).Google Scholar
  70. 71.
    S. H. Kim, F. L. Suddath, G. J. Quigley, A. McPherson, J. L. Sussman, A. H. J. Wang, N. C. Seeman andA. Rich, Science185, 435 (1974).PubMedGoogle Scholar
  71. 72.
    C. J. Bruton andB. S. Hartley, J. molec. Biol.52, 165 (1970).CrossRefPubMedGoogle Scholar
  72. 73.
    D. V. Santi andS. O. Cunnion, Biochemistry13, 481 (1974).CrossRefPubMedGoogle Scholar
  73. 74.
    H. R. Bosshard, to be published.Google Scholar
  74. 75.
    B. R. Reid, G. L. E. Koch, Y. Boulanger, B. S. Hartley andD. M. Blow, J. molec. Biol.80, 199 (1973).CrossRefPubMedGoogle Scholar
  75. 76.
    H. R. Bosshard, G. L. E. Koch andB. S. Hartley, Eur. J. Biochem.53, 493 (1975).CrossRefPubMedGoogle Scholar
  76. 77.
    A. R. Fersht, Biochemistry14, 5 (1975).CrossRefPubMedGoogle Scholar
  77. 78.
    G. Krauss, A. Pingoud, D. Boehme, D. Riesner, F. Peters andG. Maass, Eur. J. Biochem.55, 517 (1975).CrossRefPubMedGoogle Scholar
  78. 79.
    A. Pingoud, D. Boehme, D. Riesner, R. Kownatzki andG. Maass, Eur. J. Biochem.56, 617 (1975).CrossRefGoogle Scholar
  79. 80.
    G. L. E. Koch, Y. Boulanger andB. S. Hartley, Nature, Lond.249, 316 (1974).Google Scholar
  80. 81.
    Y. Boulanger, H. R. Bosshard andG. L. E. Koch, Eur. J. Biochem., in press.Google Scholar
  81. 82.
    R. J. Poljak, L. M. Amzel, B. L. Chen, R. P. Phizacherley andF. Saul, Proc. natn. Acad. Sci. USA71, 3440 (1974).Google Scholar
  82. 83.
    H. M. Kosakowski andE. Holler, Eur. J. Biochem.38, 274 (1973).CrossRefPubMedGoogle Scholar
  83. 84.
    E. Holler, B. Hammer-Raber, T. Hanke andP. Bartmann, Biochemistry14, 2496 (1975).CrossRefPubMedGoogle Scholar
  84. 85.
    B. Roe, M. Sirover andB. Dudock, Biochemistry12, 4146 (1973).CrossRefPubMedGoogle Scholar
  85. 86.
    L. Pauling,Festschrift Arthur Stoll (Birkhäuser Verlag Basel 1958), p. 597.Google Scholar
  86. 87.
    F. H. Bergmann, P. Berg andM. Dieckmann, J. biol. Chem.236, 1735 (1961).Google Scholar
  87. 88.
    M. Yarus, Nature New Biol.239, 106 (1972).PubMedGoogle Scholar
  88. 89.
    M. Yarus andP. Berg, J. molec. Biol.42, 171 (1969).CrossRefPubMedGoogle Scholar
  89. 90.
    M. Yarus, Proc. natn. Acad. Sci. USA69, 1915 (1972).Google Scholar
  90. 91.
    M. Yarus, Nature New Biol.245, 5 (1973).PubMedGoogle Scholar
  91. 92.
    E. W. Eldred andP. R. Schimmel, Biochemistry11, 17 (1972).CrossRefPubMedGoogle Scholar
  92. 93.
    T. N. E. Loevgren, J. Heinonen andR. B. Loftfield, J. biol. Chem.250, 3884 (1975).Google Scholar
  93. 94.
    A. R. Fersht andR. Jakes, Biochemistry14, 3350 (1975).CrossRefPubMedGoogle Scholar
  94. 95.
    I am grateful to many of my colleagues for critical advice and constructive comments to this article. My particular thanks go toGordon L. E. Koch for his linguistic help.Google Scholar

Copyright information

© Birkhäuser-Verlag 1976

Authors and Affiliations

  • H. R. Bosshard
    • 1
  1. 1.Biochemisches Institut der UniversitätZürichSwitzerland

Personalised recommendations