Advertisement

BIT Numerical Mathematics

, Volume 31, Issue 3, pp 540–544 | Cite as

On a generalization of compound Newton-Cotes quadrature formulas

  • Peter Köhler
Scientific Notes

Abstract

We consider quadrature formulas defined by piecewise polynomial interpolation at equidistant nodes, admitting the nodes of adjacent polynomials to overlap, which generalizes the interpolation scheme of the compound Newton-Cotes quadrature formulas. The error constantse μ,n in the estimate
$$|R_n [f]| \leqslant e_{\mu ,n} ||f^{(\mu )} ||_\infty$$
are considered for the highest possible values of μ, which are μ=r ifr is even, and μ=r+1 ifr is odd (wherer − 1 is the degree of the polynomials used for interpolation). It is determined which quadrature formulas of the type introduced have (asymptotically) the least error constant. As a result, though the compound Newton-Cotes quadrature formulas have an optimality property, they are not the best formulas of this type.

AMS subject classification

41A55 65D32 

Keywords and Phrases

quadrature formulas compound Newton-Cotes quadrature formulas piecewise polynomial interpolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Brass,Quadraturverfahren, Vandenhoeck & Ruprecht, Göttingen, 1977.Google Scholar
  2. [2]
    K.-J. Förster, Über Monotonie und Fehlerkontrolle bei den Gregoryschen Quadraturverfahren, ZAMM 67(1987), 257–266.Google Scholar
  3. [3]
    P. Köhler,On a generalization of compound Newton-Cotes quadrature formulas, Institut für Mathematik der TU Braunschweig, Bericht 90/15.Google Scholar
  4. [4]
    L. M. Milne-Thomson,The Calculus of Finite Differences, 2. ed., Chelsea Publishing Company, New York, 1981.Google Scholar
  5. [5]
    C. Runge/Fr. A. Willers, Numerische und Graphische Quadratur und Integration gewöhnlicher und partieller Differentialgeichungen, in:Encyklopädie der Mathematischen Wissenschaften, Vol. 2, Book 3, Part 1, Teubner, Leipzig, 1909–1921, 47–176.Google Scholar
  6. [6]
    J. F. Steffensen, Das Restglied der Cotesschen Formel zur numerischen Integration, Jahresber. Deutsche Math. Verein. 42(1933), 141–143.Google Scholar
  7. [7]
    J. F. Steffensen,Interpolation, 2. ed., Chelsea Publishing Company, New York, 1950.Google Scholar
  8. [8]
    R. Zurmühl,Praktische Mathematik für Ingenieure und Physiker, 5. ed., Springer-Verlag, Berlin, 1965.Google Scholar

Copyright information

© BIT Foundations 1991

Authors and Affiliations

  • Peter Köhler
    • 1
  1. 1.Institut für Angewandte Mathematik, TU BraunschweigBraunschweigGermany

Personalised recommendations