BIT Numerical Mathematics

, Volume 12, Issue 3, pp 291–298 | Cite as

Quadratic convergence in interval arithmetic, part II

  • Webb Miller


The size of the error incurred by one operation in an interval arithmetic procedure depends on the extent to which the operands are dependent, i.e., depend on the same initial variables. In this part we will investigate the effect of such dependence. Our results are applied to prove the quadratic convergence of the “centered form” and of a method of Hansen and Smith for solving linear algebraic systems.


Computational Mathematic Algebraic System Initial Variable Centered Form Interval Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Apostol,Mathematical Analysis, Addison-Wesley, Reading (1957).Google Scholar
  2. 2.
    N. Apostolatos and U. Kulish, Grundlagen einer Maschinenintervallarithmetik, Computing 2 (1967), 89–104.Google Scholar
  3. 3.
    N. Apostolatos and U. Kulish, Approximation der erweiterten Intervallarithmetik durch die einfache Maschinenintervallarithmetik, Ibid. 2 (1967), 181–194.Google Scholar
  4. 4.
    N. Apostolatos and U. Kulish, Grundzüge einer Intervallrechnung für Matrizen und einige Anwendungen, Elektron. Rechenanl. 10 (1968), 73–83.Google Scholar
  5. 5.
    G. Forsythe and C. B. Moler,Computer Solution of Linear Algebraic Systems, Prentice-Hall, Englewood Cliffs, N.J., (1967).Google Scholar
  6. 6.
    E. Hansen and R. Smith,Interval arithmetic in matrix computations, Part II, SIAM J. Numer. Anal. 4 (1967), 1–9.Google Scholar
  7. 7.
    E. Hansen (ed),Topics in Interval Analysis, Clarendon, Oxford (1969).Google Scholar
  8. 8.
    E. Hansen and R. Smith,On the centered form, in [7] (1969), 102–106.Google Scholar
  9. 9.
    W. Miller,On an interval-arithmetic matrix method, BIT (1972), 213–219.Google Scholar
  10. 10.
    R. Moore,Interval Analysis, Prentice-Hall, New Jersey (1966).Google Scholar
  11. 11.
    K. Nickel,Zeros of polynomials and other topics, in [7] (1969). 25–34.Google Scholar

Copyright information

© BIT Foundations 1972

Authors and Affiliations

  • Webb Miller
    • 1
  1. 1.Computer Science DepartmentPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations