BIT Numerical Mathematics

, Volume 30, Issue 1, pp 101–113 | Cite as

Perturbation bounds on the polar decomposition

  • Anders Barrlund
Part II Numerical Mathematics


The polar decomposition of ann ×n-matrixA takes the formA=MH whereM is orthogonal andH is symmetric and positive semidefinite. This paper presents strict bounds, (with no order terms), on the perturbationsΔM,ΔH ofM andH respectively, whenA is perturbed byΔA. The bounds onΔM can also be applied to the orthogonal Procrustes problem.

AMS Subject Classifications



Polar decomposition Perturbation bounds Positive semidefinite Procrustes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Apostol,Mathematical Analysis, a Modern Approach to Advanced Calculus, Addison-Wesley Publishing Company, Massachusetts 1957.Google Scholar
  2. 2.
    C. Chen, Ji-guang Sun,Perturbation bounds for the polar factors, Manuscript 1987; J. Comp. Math., 7: 4, 1989.Google Scholar
  3. 3.
    G. H. Golub, C. F. Van Loan,Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 1983.Google Scholar
  4. 4.
    P. Halmos,Finite Dimensional Vector Spaces, Van Nostrand, New York, 1958.Google Scholar
  5. 5.
    R. J. Hanson and M. J. Norris,Analysis of measurements based on the singular value decomposition, SIAM J. Stat. Comp., vol. 2, pp. 363–373, 1981.CrossRefGoogle Scholar
  6. 6.
    N. J. Higham,Computing the polar decomposition — with applications, SIAM J. Stat. Comp., vol. 7, pp. 1160–1174, 1986.CrossRefGoogle Scholar
  7. 7.
    N. J. Higham and R. S. Schreiber,Fast polar decomposition of an arbitrary matrix, Technical Report 88-942, Department of Computer Science, Cornell University, 1988;to appear in SIAM J. Stat. Comp.Google Scholar
  8. 8.
    C. Kenney and A. J. Laub,Polar decomposition and matrix sign function condition estimates. Report SCL 89-01, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, January 1989; submitted to SIAM J. Stat. Comp.Google Scholar
  9. 9.
    P. H. Schönemann,A generalized solution of the orthogonal Procrustes problem, Psychometrika, vol. 31, pp. 1–10, 1966.Google Scholar
  10. 10.
    G. W. Stewart,Introduction to Matrix Computations, Academic Press, New York-London, 1973.Google Scholar
  11. 11.
    I. Söderkvist,Determination of rigid body movement, UMINF-131.87, Inst. of Information Processing, University of Umeå, Sweden, 1987.Google Scholar

Copyright information

© BIT Foundations 1990

Authors and Affiliations

  • Anders Barrlund
    • 1
  1. 1.Institute of Information ProcessingUniversity of UmeåUmeåSweden

Personalised recommendations