Advertisement

BIT Numerical Mathematics

, Volume 30, Issue 3, pp 508–515 | Cite as

Using error-bounds for hyperpower methods to calculate inclusions for the inverse of a matrix

  • J. Herzberger
Part II Numerical Mathematics

Abstract

By means of error-bounds for the well-known hyperpower methods for approximating the inverse of a matrix we define inclusion methods for the inverse matrix. These methods are using machine interval operations and are giving guaranteed inclusions for the inverse matrix whenever the convergence of the applied hyperpower methods can be shown. In comparison with the very efficient interval Schulz's method in the literature, our methods are more efficient in terms of the efficiency index. Some numerical examples are given.

AMS Classification

65F30 65G10 

Keywords

Matrix inversion error-bounds for hyperpower methods interval analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ACRITH.High-accuracy arithmetic subroutine library. Program description and user's guide. IBM SC 33-6164-1 (1984).Google Scholar
  2. [2]
    G. Alefeld, N. Apostolatos: Praktische Anwendung von Abschätzungsformeln bei Iterationsverfahren. Z. angew. Math. Mech. 48 (1968) T46-T49.Google Scholar
  3. [3]
    G. Alefeld, J. Herzberger:Introduction to Interval Computations. Academic Press, New York 1983.Google Scholar
  4. [4]
    M. Altman:An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space. Pacific J. Math. 10 (1960), 1107–1113.Google Scholar
  5. [5]
    P. Forster: Bemerkungen zum Iterationsverfahren von Schulz zur Bestimmung der Inversen einer Matrix. Numer Math. 12 (1968), 211–214.Google Scholar
  6. [6]
    J. Herzberger:A class of optimal iterative methods of inverting a linear bounded operator. Numer. Funct. Anal. and Optimiz. 9 (1987), 521–533.Google Scholar
  7. [7]
    J. Herzberger: Iterationsverfahren höherer Ordnung zur Einschließung der Inversen einer Matrix. Z. angew. Math. Mech. 69 (1989), 115–120.Google Scholar
  8. [8]
    J. Herzberger, Lj. Petković:On the construction of efficient interval Schulz's methods for bounding the inverse matrix. Z. angew. Math. Mech., (to appear).Google Scholar
  9. [9]
    A. S. Householder:The Theory of Matrices in Numerical Analysis. Blaisdell Publ. Comp., New York 1964.Google Scholar
  10. [10]
    F. Krückeberg: Inversion von Matrizen mit Fehlererfassung. Z. angew. Math. Mech. 46 (1966), T69-T71.Google Scholar
  11. [11]
    U. Kulisch: PASCAL-SC.Information Manual and Floppy Disks. Teubner-Wiley. Stuttgart 1987.Google Scholar
  12. [12]
    W. V. Petryshyn:On the inversion of matrices and linear operators. Proc. Amer. Math. Soc. 16 (1965), 893–901.Google Scholar
  13. [13]
    E. Stickel:On a class of high order methods for inverting matrices. Z. angew. Math. Mech. 67 (1987), 334–336.Google Scholar
  14. [14]
    J. F. Traub:Iterative Methods for the Solution of Equations. Prentice-Hall Inc., Englewood-Cliffs N.J. 1964.Google Scholar

Copyright information

© BIT Foundations 1990

Authors and Affiliations

  • J. Herzberger
    • 1
  1. 1.Fachbereich MathematikUniversität OldenburgOldenburgWest-Germany

Personalised recommendations