BIT Numerical Mathematics

, Volume 16, Issue 2, pp 192–204 | Cite as

A search strategy for the elementary cycles of a directed graph

  • Jayme L. Szwarcfiter
  • Peter E. Lauer
Article

Abstract

The most successful known algorithms enumerating the elementary cycles of a directed graph are based on a backtracking strategy. Such existing algorithms are discussed and a new backtracking algorithm is proposed which is bounded byO(N +M(C + 1)) time, for a directed graph withN vertices,M edges andC elementary cycles.

Keywords

Computational Mathematic Search Strategy Directed Graph Elementary Cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Berztiss,Data Structures: Theory and Practice, Academic Press, New York, N.Y. 1971.Google Scholar
  2. 2.
    A. T. Berztiss,A k-tree Algorithm for Simple Cycles of a Directed Graph, Tech. Rep. 73-6, Department of Computer Science, University of Pittsburgh, Penn., 1973.Google Scholar
  3. 3.
    A. Ehrenfeucht, L. D. Fosdick and L. J. Osterweil,An Algorithm for Finding the Elementary Circuits of a Directed Graph, Tech. Rep. #CU-UC-024-73, Department of Computer Science, University of Colorado, Colorado 1973.Google Scholar
  4. 4.
    R. W. Floyd,Nondeterministic Algorithms, J. ACM. 14 (1967), 636–644.CrossRefGoogle Scholar
  5. 5.
    J. Hopcroft and R. Tarjan,Efficient Algorithms for Graph Manipulation, Comm. ACM. 16 (1973), 372–378.CrossRefGoogle Scholar
  6. 6.
    J. Hopcroft and R. Tarjan,Efficient Planarity Testing, J. ACM. 21 (1974), 549–568.CrossRefGoogle Scholar
  7. 7.
    D. B. Johnson,Finding all the Elementary Circuits of a Directed Graph, SIAM J. Comp. 4 (1975), 77–84.CrossRefGoogle Scholar
  8. 8.
    P. E. Lauer,The Perils of Indirect Proof or Another Efficient Search Algorithm to Find the Elementary Circuits of Directed Graphs, Tech. Rep. 42, Computing Laboratory, University of Newcastle upon Tyne, Newcastle upon Tyne, 1973 (revised Sep. 1973).Google Scholar
  9. 9.
    P. G. H. Lehot,An Optimal Algorithm to Detect a Line Graph and Output its Foot Graph, J. ACM. 21 (1974), 569–575.CrossRefGoogle Scholar
  10. 10.
    M. Prabhaker and N. Deo,On Algorithms for Enumerating all Circuits of a Graph, Tech. Rep. UIUCDCS-R-73-585, Department of Computer Science, University of Illinois, Illinois, 1973 (revised Mar. 1974).Google Scholar
  11. 11.
    R. C. Read and R. E. Tarjan,Bounds on Backtrack Algorithms for Listing Cycles, Paths and Spanning Trees, Mem. ERL-M433, Electronics Research Laboratory, University of Berkeley, Berkeley, California, 1973.Google Scholar
  12. 12.
    R. C. Read and R. E. Tarjan,Bounds on Backtrack Algorithms for Listing Cycles, Paths and Spanning Trees, Networks (to appear).Google Scholar
  13. 13.
    S. M. Roberts and B. Flores,Systematic Generation of Hamiltonian Circuits, Comm. ACM. 9 (1966), 690–694.CrossRefGoogle Scholar
  14. 14.
    N. D. Roussopoulos,A max {m,n}Algorithm for Determining the Graph H from its Line Graph G, Inf. Proc. Lett. 2 (1973), 108–112.CrossRefGoogle Scholar
  15. 15.
    M. M. Syslo,Algorithm 459: The Elementary Circuits of a Graph, Comm. ACM. 16 (1973), 632–633.CrossRefGoogle Scholar
  16. 16.
    M. M. Syslo,Remark on Algorithm 459: The Elementary Circuits of a Graph, Comm. ACM. 18 (1975), 119.Google Scholar
  17. 17.
    J. L. Szwarcfiter and P. E. Lauer,Finding the Elementary Cycles of a Directed Graph in O(N+M) per Cycle, Tech. Rep. 60, University of Newcastle upon Tyne, Newcastle upon Tyne, 1974.Google Scholar
  18. 18.
    R. Tarjan,Depth-First Search and Linear Graph Algorithms, SIAM J. Comp. 2 (1972), 146–160.CrossRefGoogle Scholar
  19. 19.
    R. Tarjan,Enumeration of the Elementary Circuits of a Directed Graph, SIAM J. Comp. 3 (1973), 211–216.CrossRefGoogle Scholar
  20. 20.
    J. C. Tiernan,An Efficient Search Algorithm to Find the Elementary Circuits of a Graph, Comm. ACM. 13 (1970), 722–726.CrossRefGoogle Scholar
  21. 21.
    H. Weinblatt,A New Search Algorithm for Finding the Simple Cycles of a Finite Directed Graph, J. ACM. 19 (1972), 43–56.CrossRefGoogle Scholar
  22. 22.
    J. L. Szwarcfiter and P. E. Lauer,A New Backtracking Search Strategy for the Enumeration of the Elementary Cycles of a Directed Graph, Tech. Report Series, 69, University of Newcastle upon Tyne (1975).Google Scholar
  23. 23.
    J. L. Szwarcfiter,On Optimal and Near-Optimal Algorithms for Some Computational Graph Problems, Ph. D. Thesis, University of Newcastle upon Tyne (1975).Google Scholar

Copyright information

© BIT Foundations 1976

Authors and Affiliations

  • Jayme L. Szwarcfiter
    • 1
    • 2
  • Peter E. Lauer
    • 1
    • 2
  1. 1.Universidade Federal Do Rio De JaneiroRio De Janeiro RJBrasil
  2. 2.Computing LaboratoryUniversity of Newcastle Upon TyneNewcastle Upon TyneEngland

Personalised recommendations