Skip to main content
Log in

An algorithm for least squares analysis of spectroscopic data

BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper describes a variant of the Gauss-Newton-Hartley algorithm for nonlinear least squares, in which aQR implementation is used to solve the linear least squares problem. We follow Grey's idea of updating variables at intermediate stages of the orthogonalization. This technique, applied in partitions identified with known or suspected spectral lines, appears to be especially suited to the analysis of spectroscopic data. We suggest that this algorithm is an attractive candidate for the optimization role in Ekenberg's interactive computer graphics curve fitting program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. H. Barham and W. Drane,An algorithm for least squares estimation of nonlinear parameters when some of the parameters are linear, Technometrics 14 (1972), 757–766.

    Google Scholar 

  2. N. A. Broste,A comparison of an orthonormal optimization program and conjugate gradients, Carnegie Mellon Univ.: Pittsburgh 1968, Univ. Microfilm #69-7898.

    Google Scholar 

  3. L. W. Cornwell, R. J. Pegis, A. K. Rigler, and T. P. Vogl,Grey's method for nonlinear optimization, J. Opt. Soc. Am. 63 (1973), 576–581.

    Google Scholar 

  4. G. Dahlquist and Å. Björck,Numerical Methods, Prentice-Hall, Englewood Cliffs, 1974.

    Google Scholar 

  5. B. Ekenberg,Curve fitting by use of graphic display, BIT 15 (1975), 385–393.

    Google Scholar 

  6. G. H. Golub and V. Pereyra,The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Num. Anal. 10 (1973), 413–432.

    Google Scholar 

  7. W. B. Gragg, R. J. Leveque, and J. A. Trangenstein,Numerically stable methods for updating regressions, J. Am. Stat. Soc. 74 (1979), 161–168.

    Google Scholar 

  8. D. S. Grey,Aberration theories for semi-automatic lens design by electronic computers: I.Preliminary remarks, II.A specific computer program, J. Opt. Soc. Am. 53 (1963), 672–676, 677–680.

    Google Scholar 

  9. H. O. Hartley,The modified Gauss-Newton method for fitting of nonlinear regression functions by least squares, Technometrics 3 (1961), 269–280.

    Google Scholar 

  10. R. Hooke and R. A. Jeeves,Direct search solution of numerical and statistical problems, J.A.C.M. 8 (1961), 212–229.

    Google Scholar 

  11. L. Kaufman,A variable projection method for solving separable nonlinear least squares problems, BIT 15 (1975), 49–57.

    Google Scholar 

  12. L. Kaufman and V. Pereyra,A method for separable nonlinear least squares problems with separable nonlinear equality constraints, SIAM J. Num. Anal. 15 (1978), 12–20.

    Google Scholar 

  13. C. L. Lawson and R. J. Hanson,Solving Least Square Problems, Prentice-Hall, Englewood Cliffs, 1974.

    Google Scholar 

  14. J. P. Lesnick and A. K. Rigler,Computer curve fitting of spectral absorptivity data, Westinghouse Research Laboratories Report, 67-9Cl-LH1CW-R3, AD-662, 252 (1967).

  15. J. R. Rice,Experiments on Gram-Schmidt orthogonalization, Math. Comp. 20 (1966), 325–328.

    Google Scholar 

  16. A. K. Rigler and D. C. St. Clair,Note on Gram-Schmidt orthogonalization in regression calculations, University of Missouri-Rolla, Computer Science Report (1979).

  17. A. Ruhe and P. Å. Wedin,Algorithms for separable non-linear least squares problems, Stanford University Computer Science Report STAN-CS-74-434 (1974).

  18. D. C. St. Clair and A. K. Rigler,A block orthogonalization method for nonlinear regression, Computer Science and Statistics: Proceedings of the Eighth Annual Symposium on the Interface (1975), 280–287.

  19. T. P. Vogl, L. C. Lintner and A. K. Rigler,The lens II optical design computer program for IBM OS/360, Frankford Arsenal and White Sands Missile Range, Report on Contract #DAAA-25-67-C0445 (1967).

  20. R. E. von Holdt,Inversion of triple diagonal compound matrices, J.A.C.M. 9 (1962), 71–83.

    Google Scholar 

  21. D. D. Walling,Nonlinear least squares curve fitting when some parameters are linear, The Texas Journal of Science 20 (1968), 119–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clair, D.C., Rigler, A.K. An algorithm for least squares analysis of spectroscopic data. BIT 19, 448–456 (1979). https://doi.org/10.1007/BF01931260

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01931260

Keywords

Navigation