BIT Numerical Mathematics

, Volume 19, Issue 1, pp 39–42 | Cite as

On a lower bound for the perron eigenvalue

  • Jorma Kaarlo Merikoski


A lower boundn−1Σ i,k aik for the Perron eigenvalue of a symmetric non-negative irreducible matrixA=(aik) is studied and compared with certain other lower bounds.


Lower Bound Computational Mathematic Irreducible matrixA Perron Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Brauer and I. C. Gentry,Bounds for the greatest characteristic root of an irreducible non-negative matrix, Lin. Alg. Appl. 8 (1974), 105–107.Google Scholar
  2. 2.
    R. A. Brooker and F. H. Sumner,The method of Lanczos for calculating the characteristic roots and vectors of a real symmetric matrix, Proc. I.E.E. 103 (1956) Part B, Suppl. 1, 114.Google Scholar
  3. 3.
    C. A. Hall and T. A. Porsching,Bounds for the maximal eigenvalue of a non-negative irreducible matrix, Duke Math. J. 36 (1969), 159–164.Google Scholar
  4. 4.
    A. Ostrowski and H. Schneider,Bounds for the maximal characteristic root of a non-negative irreducible matrix, Duke Math. J. 27 (1960), 547–553.Google Scholar
  5. 5.
    J. H. Wilkinson,Householder's method for symmetric matrices, Numer. Math. 4 (1962), 354–361.Google Scholar

Copyright information

© BIT Foundations 1979

Authors and Affiliations

  • Jorma Kaarlo Merikoski
    • 1
  1. 1.Department of Mathematical SciencesUniversity of TampereTampere 10Finland

Personalised recommendations