BIT Numerical Mathematics

, Volume 19, Issue 2, pp 229–235 | Cite as

A newton form for trigonometric Hermite interpolation

  • Tom Lyche
Article

Abstract

Trigonometric divided differences are used to derive a trigonometric analog of the Newton form of the Hermite interpolation polynomial.

Keywords

Computational Mathematic Interpolation Polynomial Divided Difference Hermite Interpolation Newton Form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Baron, Zur trigonometrischen Interpolation, Computing 16 (1976), 319–328.Google Scholar
  2. 2.
    T. Lyche and R. Winther,A stable recurrence relation for trigonometric B-splines, to appear in J. of approximation theory.Google Scholar
  3. 3.
    Tom Lyche,A Newton form for trigonometric Hermite interpolation, Research Report 37, Institute of Informatics, University of Olso.Google Scholar
  4. 4.
    I. J. Schoenberg,On interpolation by spline functions and its minimal properties, inOn Approximation Theory, P. L. Butzer and J. Korevaar (Eds.), ISNM 5, Birkhäuser Verlag, Basel and Stuttgart, 1964, 109–129.Google Scholar

Copyright information

© BIT Foundations 1979

Authors and Affiliations

  • Tom Lyche
    • 1
  1. 1.Institute of InformaticsUniversity of Oslo BlindernOslo 3Norway

Personalised recommendations