, Volume 47, Issue 9, pp 923–934 | Cite as

Disease resistance in farm animals

  • M. Müller
  • G. Brem
Multi-author Review Transgenic vertebrates


Genetic variations in disease resistance of farm animals can be observed at all levels of defence against infectious agents. In most cases susceptibility to infections has polygenic origins. In domestic animals only a few instances of a single genetic locus responsible for disease resistance are known. A well-examined example is the Mx1 gene product of certain mice strains conferring selective resistance to influenza virus infections. Attempts to improve disease resistance by gene transfer of different gene constructs into farm animals include the use of monoclonal antibody gene constructs, transgenes consisting of antisense RNA genes directed against viruses and Mx1 cDNA containing transgenes.

Key words

Disease resistance genetic variations Mx system breeding techniques transgenes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebi, M., Fäh, J., Hurt, N., Samuel, C. E., Thomis, D., Bazzigher, L., Pavlovic, J., Haller, O., and Staeheli, P., cDNA structures and regulation of two interferon-induced human Mx proteins. Molec. cell. Biol.9 (1989) 5062–5072.PubMedGoogle Scholar
  2. 2.
    Arnheiter, H., and Haller, O., Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J.7 (1988) 1315–1320.PubMedGoogle Scholar
  3. 3.
    Arnheiter, H., Skuntz, S., Noteborn, M., Chang, S., and Meier, E., Transgenic mice with intracellular immunity to influenza virus. Cell62 (1990) 51–61.PubMedGoogle Scholar
  4. 4.
    Bacon, L. D., Influence of the major histocompatibility complex on disease resistance and productivity. Poult. Sci.66 (1987) 802–811.PubMedGoogle Scholar
  5. 5.
    Baltimore, D., Intracellular immunization. Nature335 (1988) 395–396.PubMedGoogle Scholar
  6. 6.
    Beckmann, J. S., Friedmann, A., Hallerman, E., Kashi, Y., Nave, A., and Soller, M., RFLP analysis as a means of providing markers of disease resistance in domestic livestock. Anim. Genet.19, suppl. 1 (1987) 45–49.Google Scholar
  7. 7.
    Beckman, J. S., and Soller, M., Molecular markers in the genetic improvement of farm animals. Biotechnology5 (1987) 573–576.Google Scholar
  8. 8.
    Beever, J. E., George, P. D., Fernando, R. L., Stormont, C. J., and Lewin, H. A., Associations between genetic markers and growth and carcass traits in a paternal half-sib family of Angus cattle. J. Anim. Sci.68 (1990) 334–337.Google Scholar
  9. 9.
    Biozzi, G., Mouton, D., Stieffel, C., and Bouthillier, Y., A major role of the macrophage in quantitative genetic regulation of immunoresponsiveness and antiinfectious immunity. Adv. Immun.36 (1984) 189–232.PubMedGoogle Scholar
  10. 10.
    Biozzi, G., Siqueira, M., Stiefel, C., Ibanez, O. M., Mouton, D., and Ferreira, V. C. A., Genetic selections for relevant immunological functions, in: Immunology 80 — Progress in Immunology, vol. IV, pp. 432–457. Eds M. Fougereau and J. Dausset. Academic Press, New York 1980.Google Scholar
  11. 11.
    Bortolozzi, J., and Hines, H. C., Histocompatibility antigens and disease resistance in Jersey breed of cattle. Proc. 2nd World Congr. Genet. Appl. Livest. Prod.7 (1982) 325–330.Google Scholar
  12. 12.
    Brem, G., Ein System zur Erfassung von Gesundheitsdaten in Milchviehbetrieben und ihre Verarbeitung mit Hilfe tierärztlicher Praxiscomputer. XIIth World Congress on Diseases in Cattle, vol. 1, pp. 609–612. Amsterdam 1982.Google Scholar
  13. 13.
    Brem, G., Brenig, B., Goodman, H. M., Selden, R. C., Graf, F., Kruff, B., Springman, K., Meyer, J., Winnacker, E.-L., and Kräusslich, H., Production of transgenic mice, rabbits and pigs by microinjection into pronuclei. Zuchthygiene20 (1985) 251–252.Google Scholar
  14. 14.
    Brem, G., Brenig, B., Müller, M., Kräusslich, H., and Winnacker, E.-L., Production of transgenic pigs and possible application to pig breeding. Occ. Publ. Br. Soc. Anim. Prod.12 (1988) 15–31.Google Scholar
  15. 15.
    Brenig, B., and Brem, G., Principles of genetic manipulation of livestock, in: Animal Biotechnology and the Quality of Meat Production, pp. 1–16. Eds L. O. Fiems, B. G. Cottyn and D. I. Demeyer. Elsevier Science Publishers B. V., Amsterdam 1991.Google Scholar
  16. 16.
    Cameron, H. S., Hughes, E. H., and Gregory, P. W., Genetic resistance to Brucellosis in swine. J. Anim. Sci.1 (1942) 106–110.Google Scholar
  17. 17.
    Charleston, B., Lida, J., and Smith, I. K. M., Porcine Mx specific gene sequences and expression. Proc. 11th Congr. Internat. Pig. Vet. Soc. (1990) 280.Google Scholar
  18. 18.
    Chen, X.-Z., Yun, J. S., and Wagner, T. E., Enhanced viral resistance in transgenic mice expressing human β1 interferon. J. Virol.62 (1988) 3883–3887.PubMedGoogle Scholar
  19. 19.
    Crittenden, L. B., Identification and cloning of genes for insertion. Poult. Sci.65 (1986) 1468–1473.Google Scholar
  20. 20.
    Dam, L., and Ostergard, H., Investigations of associations between BolA and bovine virus diarrhoea. Anim. Blood Grps Biochem. Genet.16, suppl. 1 (1985) 88.Google Scholar
  21. 21.
    Dausset, J., and Svejgaard, A., Eds, HLA and Disease. Munksgaard, Copenhagen 1978.Google Scholar
  22. 22.
    De Maeyer-Guingnard, J., and De Maeyer, E., Immunomodulation by interferons: recent developments, in: Interferon, vol. 6, pp. 69–91. Ed. I. Gresser. Academic Press, New York 1985.Google Scholar
  23. 23.
    De Vries, R. R. P., Biological significance of the MHC, in: Improving Genetic Disease Resistance in Farm Animals, pp. 6–12. Eds A. J. van der Zijpp and W. Sybesma. Kluwer Academic Publishers, Dordrecht 1988.Google Scholar
  24. 24.
    Dinarello, C. A., Interleukin-1 and the pathogenesis of the acutephase response. N. Engl. J. Med.311 (1984) 1413–1418.PubMedGoogle Scholar
  25. 25.
    Distl, O., Zuch auf Widerstandsfähigkeit gegen Krankheiten beim Rind. Ferdinand Enke Verlag, Stuttgart 1990.Google Scholar
  26. 26.
    Distl, O., Wurm, A., Glibotic, A., Brem, G., and Kräusslich, H., Analysis of relationships between veterinary recorded production diseases and milk production in dairy cows. Livest. Prod. Sci.23 (1989) 67–78.Google Scholar
  27. 27.
    Dreiding, P., Staeheli, P., and Haller, O., Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses. Virology140 (1985) 192–196.PubMedGoogle Scholar
  28. 28.
    Dubath, M. L., Gerber, H., and Lazary, S., Association between susceptibility to equine sarcoid and ELA haplotypes in multiple-case families. Anim. Genet.18, suppl. 1 (1987) 24–25.Google Scholar
  29. 29.
    Ernst, L. K., Zakcharchenko, V. I., Suraeva, N. M., Ponomareva, T. I., Miroshnichenko, O. I., Prokofev, M. I., and Tickchonenko, T. I., Transgenic rabbits with antisense RNA gene targetted at adenovirus h5. Theriogenology35 (1990) 1257–1271.Google Scholar
  30. 30.
    Falconer, D. S., Introduction to Quantitative Genetics. Longman. London and New York 1981.Google Scholar
  31. 31.
    Festing, M. F. W., and Blackwell, J. M., in: Genetics of Resistance to Bacterial and Parasitic Infections, pp. 21–61. Eds D. Wakelin and J. H. Blackwell. Taylor and Francis, London 1988.Google Scholar
  32. 32.
    Friedman, A. D., Triezenberg, S. J., and McKnight, S. L., Expression of a truncated viral transactivator selectively impedes lytic infection by its cognate virus. Nature335 (1988) 452–454.PubMedGoogle Scholar
  33. 33.
    Fries, R., Beckmann, J. S., Georges, M., Soller, M., and Womack, J., The bovine gene map. Anim. Genet.20 (1989) 113–139.Google Scholar
  34. 34.
    Fung, M. C., Hapel, A. J., Ymer, S., Cohen, D. R., Johnson, R. M., Campbell, H. D., and Young, I. G., Molecular cloning of cDNA for murine intrleukin-3. Nature307 (1984) 233–237.PubMedGoogle Scholar
  35. 35.
    Gavora, J. S., Genetic disease resistance: mechanisms and strategies for improvement. Proc. 4th World Congr. Genet. appl. Livest. Prod.16 (1990) 427–436.Google Scholar
  36. 36.
    Geldermann, H., Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor. appl. Genet.46 (1975) 319–330.Google Scholar
  37. 37.
    Gibbons, R. A., Sellwood, R., Burrows, M., and Hunter, P. A., Inheritance of resistance to neonatalE. coli diarrhoea in the pig: examination of the genetic system. Theor. appl. Genet.51 (1977) 65–70.Google Scholar
  38. 38.
    Golub, E. S., The cellular Basis of the Immune Response. Sinauer Assoc., Mass., USA, 1981.Google Scholar
  39. 39.
    Haller, O., Acklin, M., and Staeheli, P., Influenza virus resistance of wild mice: wild type and mutant Mx alleles occur at comparable frequencies. J. Interferon Res.7 (1987) 647–656.PubMedGoogle Scholar
  40. 40.
    Hammer, R. E., Pursel, V. G., Rexroad, C. R. E., Wall, R. J., Palmiter, R. D., and Brinster, R. L., Production of transgenic rabbits, sheep and pigs by microinjection. Nature315 (1985) 680–683.PubMedGoogle Scholar
  41. 41.
    Hines, H. C., Ross, M. J., Michalak, M. M., and Allaire, F. R., The association of BoLA-antigen with milk production and disease susceptibility differences. Proc. XIXth Int. Conf. Animal Blood Grps Biochem. Polymorphisms (1985) 84.Google Scholar
  42. 42.
    Hope, J., and Hunter, N., The biology and molecular genetics of scrapie susceptibility. Proc. 4th World Congr. Genet. appl. Livest. Prod.16 (1990) 437–444.Google Scholar
  43. 43.
    Horisberger, M. A., The action of recombinant bovine interferons on influenza virus replication correlates with the induction of two Mx-related proteins in bovine cells. Virology162 (1988) 181–186.Google Scholar
  44. 44.
    Horisberger, M. A., McMaster, G. K., Zeller, H., Wathelet, M. G., Dellis, J., and Content, J., Cloning and sequence analysis of cDNAs for interferon- and virus-induced human Mx proteins reveal that they contain putative guanine nucleotide-binding sites: functional study of the corresponding gene promoter. J. Virol.64 (1990) 1171–1181.PubMedGoogle Scholar
  45. 45.
    Hug, H., Costas, M., Staeheli, P., Aebi, M., and Weissmann, C., Organization of the murine Mx gene and characterization of its interferon- and virus-inducible promoter. Molec. cell. Biol.8 (1988) 3065–3079.PubMedGoogle Scholar
  46. 46.
    Hutt, F. B., Genetic Resistance to Disease in Domestic Animals. Comstock Publishing Associates, Ithaca, New York 1958.Google Scholar
  47. 47.
    Hutt, F. B., and Rasmusen, B. A., Resistance to pullorum disease in the fowl, in: Animal Genetics, pp. 545–546. John Wiley and Sons, New York 1982.Google Scholar
  48. 48.
    Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., Eds, PCR Protocols, a Guide to Methods and Applications. Academic Press, London 1990.Google Scholar
  49. 49.
    Inouye, M., Antisense RNA: its function and applications in gene regulation — a review. Gene72 (1988) 25–34.PubMedGoogle Scholar
  50. 50.
    Khansari, D. N., Murgo, A. J., and Faith, R. E., Effects of stress on the immune system. Immun. Today11 (1990) 170–175.PubMedGoogle Scholar
  51. 51.
    Kirby, L. T., DNA Fingerprinting, an Introduction. Academic Press, London 1990.Google Scholar
  52. 52.
    Klein, J., Natural History of the Major Histocompatibility Complex. John Wiley and Sons, New York 1986.Google Scholar
  53. 53.
    Konkel, D. A., Tilghman, S. M., and Leder, P., The sequence of the chromosomal mouse β-globin major gene: homologies in capping, splicing and poly(A) sites. Cell15 (1978) 1125–1132.PubMedGoogle Scholar
  54. 54.
    Krug, R. M., Shaw, M., Broni, B., Shapiro, G., and Haller, O., Inhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product. J. Virol.56 (1985) 201–206.PubMedGoogle Scholar
  55. 55.
    Lamont, S. J., Bolin, C., and Cheville, N., Genetic resistance of fowl cholera is linked to the major histocompatibility complex. Immunogenetics25 (1987) 284–289.PubMedGoogle Scholar
  56. 56.
    Lamont, S. J., The chicken major histocompatibility complex in disease resistance and poultry breeding. J. Dairy Sci.72 (1989) 1328–1333.PubMedGoogle Scholar
  57. 57.
    Landegren, U., Kaiser, R., Caskey, C. T., and Hood, L., DNA diagnostics — molecular techniques and automation. Science242 (1988) 229–237.PubMedGoogle Scholar
  58. 58.
    Lazary, S., and Gerber, H., ELA disease associations, in: Improving Genetic Disease Resistance in Farm Animals, pp. 134–142. Eds A. J. van der Zijpp and W. Sybesma. Kluwer Academic Publishers, Dordrecht 1989.Google Scholar
  59. 59.
    Lazary, S., Gerber, H., Glatt, P. A., and Straub, R., Equine leucocyte antigens in sarcoid-affected horses. Equine Vet. J.17 (1985) 283–286.PubMedGoogle Scholar
  60. 60.
    Lewin, H. A., Disease resistance and immune response genes in cattle: strategies for their detection and evidence of their existence. J. Dairy Sci.72 (1989) 1334–1348.PubMedGoogle Scholar
  61. 61.
    Lewin, H. A., Genetic factors influencing subclinical bovine leukemia virus infection. Proc. 4th World Congr. Genet. appl. Livest. Prod.16 (1990) 465.Google Scholar
  62. 62.
    Lewin, H. A., and Bernoco, D., Evidence for BoLA linked resistance and susceptibility to subclinical progression of bovine leukemia virus infection. Anim. Genet.17 (1986) 197–207.PubMedGoogle Scholar
  63. 63.
    Lie, O., and Solbu, H., Evidence for a major gene regulating serum lysozyme activity in cattle. Zeitschr. Tierzchtg, Züchtgsbiol.100 (1983) 134–138.Google Scholar
  64. 64.
    Lie O., Genetics of disease resistance. Proc. 4th World Congr. Genet. appl. Livest. Prod.16 (1990) 421–426.Google Scholar
  65. 65.
    Lindenmann, J., Resistance of mice to mouse adapted influenza A virus. Virology16 (1962) 203–204.PubMedGoogle Scholar
  66. 66.
    Lindenmann, J., Inheritance of resistance to influenza virus in mice. Proc. Soc. exp. Biol. Med.116 (1964) 506–509.PubMedGoogle Scholar
  67. 67.
    Lindenmann, J., Lane, C. A., and Hobson, D., The resistance of A2G mice to myxoviruses. J. Immun.90 (1963) 942–951.PubMedGoogle Scholar
  68. 68.
    Lunney, J. K., and Murrell, K. D., Immunogenetic analysis ofTrichinella spiralis infections in swine. Vet. Parasit.29 (1988) 179–193.Google Scholar
  69. 69.
    Madsen, P., Genetic resistance to bovine mastitis, in: Improving Genetic Disease Resistance in Farm Animals, pp. 169–177. Eds A. J. van der Zijpp and W. Sybesma. Kluwer Academic Publishers, Dordrecht 1989.Google Scholar
  70. 70.
    Marx, J. L., Chemical signals in the immune system. Science221 (1983) 1362–1364.PubMedGoogle Scholar
  71. 71.
    McDevitt, H. O., and Benacerraf, B., Genetic control of specific immune responses. Adv. Immun.11 (1969) 31–74.PubMedGoogle Scholar
  72. 72.
    Meier, E., Kunz, G., Haller, O., and Anheiter, H., Activity of rat Mx proteins against a rhabdovirus. J. Virol.64 (1990) 6263–6269.PubMedGoogle Scholar
  73. 73.
    Melton, D. A., Ed., Antisense RNA and DNA. Current Commun. molec. Biol. cold Spring Harbor Laboratory, CSH, New York 1988.Google Scholar
  74. 74.
    Meyer, F., Cwik, S., Erhardt, G., Schmid, D. O., and senft, B., Zum nachweis von Lymphozyten Antigenen des BoLA-Systems bei Rindern mit Sekretionsstörungen der Milchdrüse. Züchtungskunde56 (1984) 108–114.Google Scholar
  75. 75.
    Meyer, K. B., and Neuberger, M. S., The immunoglobulin ϰ locus contains a second, stronger B cell-specific enhancer which is located downstream of the constant region. EMBO J.8 (1989) 1959–1965.PubMedGoogle Scholar
  76. 76.
    Meyer, J., Radzikovski, A., Buschmann, H., Kräusslich, H., and Osterkorn, K., Untersuchungen an Mäusen, welche auf hohes und niedriges Phagozytosevermögen selektioniert worden sind. Zeitschr. Tierzchtg Züchtgsbiol.95 (1978) 52–59.Google Scholar
  77. 77.
    Meyer, T., and Horisberger, M. A., Combined action of mouse α and β interferons in infleunza virus infected macrophages containing the resistance gene Mx. J. Virol.49 (1984) 709–716.PubMedGoogle Scholar
  78. 78.
    Miller, R. H., Genetics of resistance to mastitis. Proc. 2nd World Congr. Genet. appl. Livest. Prod.5 (1982) 186–198.Google Scholar
  79. 79.
    Millot, P., Chatelain, J., Dautheville, C., Salmon, D., and Cathala, F., Sheep major histo compatibility (OLA) complex: linkage between a scrapie susceptibility/resistance locus and the OLA complex in Ile-de-France sheep progenies. Immunogenetics27 (1988) 1–11.PubMedGoogle Scholar
  80. 80.
    Miroshnichenko, O. I., Borisenko, A. S., Ponomareva, T. I., and Tikchonenko, T. I., Inhibition of adenovirus replication by the E1A antisense transcript initiated from hsp70 and VA-1 promoters. Biomed. Sci.1 (1990) 267–273.PubMedGoogle Scholar
  81. 81.
    Miyajima, A., Miyatake, S., Schreuers, J., DeVries, J., Arai, N., Takashi, Y., and Arai, K., Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. Fed. Am. Soc. exp. Biol. J.2 (1988) 2462–2473.Google Scholar
  82. 82.
    Mortier, C., and Haller, O., Homologues to mouse Mx protein induced by interferon in various species, in: The Biology of Interferon System, pp. 79–84. Eds K. Cantell and H. Schellekens. Martinus Nijhoff, Dordrecht 1987.Google Scholar
  83. 83.
    Müller, M., and Brem, G., Interferon-inducible murine Mx homologues in swine. 3rd Cuban and International Seminar on Interferon, Havana, Cuba, 17–22 April, 1989.Google Scholar
  84. 84.
    Murray, M., Morrison, W. I., Murray, P. K., Clifford, D. J., and Trail, J. C. M., Trypanotolerance: a review. World Anim. Rev.31 (1979) 2–12.Google Scholar
  85. 85.
    Nonecke, B. J., and Harp, J. A., Function and regulation of lymphocyte-mediated immune responses: relevance to bovine mastitis. J. Dairy Sci.72 (1989) 1313–1327.PubMedGoogle Scholar
  86. 86.
    Noteborn, M., Arnheiter, H., Richter-Mann, L., Browning, H., and Weismann, C., Transport of the murine Mx protein into the nucleus is dependent on basic carboxy-terminal sequence. J. Interferon Res.7 (1987) 657–669.PubMedGoogle Scholar
  87. 87.
    O'Brian, S. J., Ed., Genetic Maps: Locus Maps of Complex Genomes. Cold Spring Harbour Laboratory Press, New York 1990.Google Scholar
  88. 88.
    Oddgeirsson, O., Simpson, S. P., Morgan, A. L. G., Ross, D. S., and Spooner, R. L., Relationship between the bovine major histocompatibility complex (BoLA), erythrocyte markers and susceptibility to mastitis in Icelandic cattle. Anim. Genet.19 (1988) 11–16.PubMedGoogle Scholar
  89. 89.
    Ostergard, H., Kristensen, B., and Andersen, S., Investigations in farm animals of associations between the MHC system and disease resistance and fertility. Livest. Prod. Sci.22 (1989) 49–67.Google Scholar
  90. 90.
    Outteridge, P. M., Windon, R. G., and Dineen, J. K., An association between a lymphocyte antigen in sheep and the response to vaccination against the parasiteTrichostrongylus, colubriformis. Int. J. Parasit.15 (1985) 121–127.Google Scholar
  91. 91.
    Pavlovic, J., Zürcher, T., Haller, O., and Staeheli, P., Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J. Virol.64 (1990) 3370–3375.PubMedGoogle Scholar
  92. 92.
    Payne, L. N., Epizootiology of avian leukosis virus infections, in: Avian Leukosis, pp. 47–75, Ed. G. F. De Boer. Martinus Nighoff, Boston 1987.Google Scholar
  93. 93.
    Pennica, D., Nedwin, G. E., Hayflick, J. S., Seeburg, P. H., Dernak, R., Palladino, M. A., Kohr, W. J., Aggarwal, B. B. and Goeddel, D. V., Human tumour necrosis factor: precursor, structure, expression and homology to lymphotoxin. Nature312 (1984) 724–729.PubMedGoogle Scholar
  94. 94.
    Pestka, S., Langer, J. A., Zoon, K. C., and Samuel, C. E., Interferons and their action. A. Rev. Biochem.56 (1987) 727–777.Google Scholar
  95. 95.
    Pines, O., and Inouye, M., Antisense RNA regulation in prokaryotes. Trends Genet.2 (1986) 284–287.Google Scholar
  96. 96.
    Piraino, F., The mechanisms of genetic resistance of chick embryo cells to infection by Rous sarcoma virus — Bryan strain (BS-RSV). Virology32 (1967) 700–707.Google Scholar
  97. 97.
    Reeves, R. H., O'Hara, B. F., Pavan, W. J., Gearhart, J. D., and Haller, O., Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21. J. Virol.62 (1988) 4372–4375.PubMedGoogle Scholar
  98. 98.
    Renard, C., Kristensen, B., Gautschi, C., Hruban, V., Fredholm, M., and Vaiman, M., Joint report of the first international comparison test on swine lymphocyte alloantigens (SLA). Anim. Genet.19 (1988) 63–72.PubMedGoogle Scholar
  99. 99.
    Revel, M., and Chebath, J., Interferon-activated genes. Trends biochem. Sci.11 (1986) 166–170.Google Scholar
  100. 100.
    Roitt, I. M., Brostoff, J., and Male, D. K., Immunology, 2nd edn. Gower Medical Publishing, London 1989.Google Scholar
  101. 101.
    Rommens, J. M., Iannuzzi, M. C., Kerem, B.-S., Drumm, M. L., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J. R., Tsui, L.-C., and Collins, F. S., Identification of the cystic fibrosis gene: chromosome walking and jumping. Science245 (1989) 1059–1065.PubMedGoogle Scholar
  102. 102.
    Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. G., and Stevens, T. H., A putative GTP binding protein homologous to vertebrate interferon-inducible Mx proteins performs an essential function in yeast vacuolar protein sorting. Cell61 (1990) 1063–1074.PubMedGoogle Scholar
  103. 103.
    Rothschild, M. F., Chen, H. L., Christian, L. L., Lie, W. R., Venier, L., Cooper, M., Briggs, C., and Warner, C. M., Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with B.bronchiseptica. J. Anim. Sci.59 (1984) 643–649.PubMedGoogle Scholar
  104. 104.
    Ruff, G., and Lazary, S., Evidence for linkage between the caprine leucocyte antigen (CLA) system and susceptibility to CAE virus-induced arthritis in goats. Immunogenetics28 (1988) 303–309.PubMedGoogle Scholar
  105. 105.
    Rutter, J. M., Burrows, M. R., Sellwood, R., and Gibbons, R. A., A genetic basis for resistance to enteric disease caused byE. coli. Nature257 (1975) 135–136.PubMedGoogle Scholar
  106. 106.
    Salter, D. W., and Crittenden, L. B., Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Theor. appl. Genet.77 (1989) 457–461.Google Scholar
  107. 107.
    Seifert, G. W., Variations between and within breeds of cattle in resistance to field infestations of the cattle tick (Boophilus microplus). Austr. J. agric Res.22 (1971) 159–168.Google Scholar
  108. 108.
    Sellwood, R., Gibbons, R. A., Jones, G. W., and Rutter, J. M., Adhesion of enteropathogenicEscherichia coli to pig intestinal brushborders: the existence of two pig phenotypes. J. med. Microbiol.8 (1975) 405–411.PubMedGoogle Scholar
  109. 109.
    Sereda, V. N., Aethiology of influenza of domestic animals. Acta virol.18 (1974) 222–228.Google Scholar
  110. 110.
    Sharma, J. M., Natural killer cell activity in chickens exposed to Marek's disease virus: inhibition of activity in susceptible chickens and enhancement of activity in resistant and accinated chickens. Avian Dis.25 (1981) 882–893.PubMedGoogle Scholar
  111. 111.
    Shook, G. E., Selection for disease resistance. J. Dairy Sci.72 (1989) 1349–1362.PubMedGoogle Scholar
  112. 112.
    Sideras, P., Noma, T., and Honjo, T., Structure and function of interleukin 4 and 5. Immun. Rev.102 (1988) 189–212.PubMedGoogle Scholar
  113. 113.
    Siegel, P. B., and Gross, W. B., Production and persistence of antibodies in chickens to sheep erythrocytes. I. Directional selection. Poult. Sci.59 (1980) 1–5.Google Scholar
  114. 114.
    Smith, C. L., Lawrance, S. K., Gillespie, G. A., Cantor, C. R., Weissman, S. M., and Collins, F. S. Strategies of mapping and cloning macroregions of mammalian genomes. Methods Enzymol.151 (1987) 461–489.PubMedGoogle Scholar
  115. 115.
    Sobey, W. R., Selection for resistance to myxomatosis in domestic rabbits (Oryctolagus cuniculus). J. Hygiene67 (1969) 743–754.Google Scholar
  116. 116.
    Solbu, H., Spooner, R. L., and Lie, O., A possible influence of the bovine major histocompatibility complex (BoLA) on mastitis. Proc. 2nd World Congr. Genet. appl. Livest. Prod.7 (1982) 368–371.Google Scholar
  117. 117.
    Spencer, J. L., Progress towards eradication of lymphoid leukosis viruses — a review. Avian Path.13 (1984) 599–619.Google Scholar
  118. 118.
    Spooner, R., Morgan, A., Sales, D., Simpson, P., Solbu, H., and Lie O. MHC associations with mastitis. Anim. Genet.19, suppl. 1 (1988) 57–58.Google Scholar
  119. 119.
    Staeheli, P., Interferon-induced proteins and the antiviral state. Adv. Virus Res.38 (1990) 147–200.PubMedGoogle Scholar
  120. 120.
    Staeheli, P., Danielson, P., Haller, O., and Sutcliffe, J. G., Transcriptional activation of the mouse Mx gene by type I interferon. Molec. cell. Biol.6 (1986) 4770–4774.PubMedGoogle Scholar
  121. 121.
    Staeheli, P., Dreiding, P., Haller, O., and Lindenmann, J., Polyclonal and monoclonal antibodies to the interferon-inducible protein Mx of influenza virus-resistant mice. J. biol. Chem.260 (1985) 1821–1825.PubMedGoogle Scholar
  122. 122.
    Staeheli, P., Drob, R., Meier, E., Sutcliffe, J. G., and Haller, O., Influenza-susceptible mice carry Mx genes by a large deletion, or a nonsense mutation. Molec. cell. Biol.8 (1988) 4518–4523.PubMedGoogle Scholar
  123. 123.
    Staeheli, P., and Haller, O., Interferon-induced human protein with homology to protein Mx influenza virus-resistant mice. Molec. cell. Biol.5 (1985) 2150–2153.PubMedGoogle Scholar
  124. 124.
    Staeheli, P., and Haller, O., Interferon-induced Mx-protein: a mediator of cellular resistance to influenza virus. Interferon8 (1987) 1–23.PubMedGoogle Scholar
  125. 125.
    Staeheli, P., Haller, O., Boll, W., Lindenmann, J., and Weissmann, C., Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell44 (1986) 147–158.PubMedGoogle Scholar
  126. 126.
    Staeheli, P., Pravtcheva, D., Lunding, L.-G., Acklin, M., Ruddle, F., Lindenmann, J., and Haller, O., Interferon-regulated influenza virus resistance gene Mx is localized on mouse chromosome 16. J. Virol.58 (1986) 967–969.PubMedGoogle Scholar
  127. 127.
    Staeheli, P., and Sutcliffe, J. G., Identification of a second interferonregulated murine Mx gene. Molec. cell. Biol.8 (1988) 4524–4528.PubMedGoogle Scholar
  128. 128.
    Staeheli, P., Yu, Y.-X., Grob, R., and Haller, O., A double-stranded RNA-inducible fish gene homologous to the murine influenza virus resistance gene Mx. Molec. cell. Biol.9 (1989) 3117–3121.PubMedGoogle Scholar
  129. 129.
    Stear, M. J., Bath, S., Mackie, J., Dimmock, C., Brown, S. C., Nocholas, F. W., and Morris, B., The bovine major histocompatibility system and disease resistance, in: Characterization of the Bovine Immune System and the Genes Regulating Expression of Immunity with Particular Reference to Their Role in Disease Resistance, pp. 173–178. Eds, W. C. Davis, J. N. Shelton and C. W. Weems. University of Washington Press, Washington 1985.Google Scholar
  130. 130.
    Stear, M. J., Tiemey, T. J., Baldock, F. C., Brown, S. C., Nicholas, F. W., and Rudder, T. H., Class I antigens of the bovine major histocompatibility system are weakly associated with variation in faecal worm egg counts in naturally infected cattle, in: Histocompatibility Techniques, pp. 185–205. Eds H. M. Dick and F. Kissmeyer-Nielsen. Elsevier, Amsterdam 1988.Google Scholar
  131. 131.
    Stear, M. J., Newman, M. J., Nicholas, F. W., Brown, S. C., and Holroyd, R. G., Tick resistance and the major histocompatibility system. Aust. J. biol. med. Sci.62 (1984) 47–52.Google Scholar
  132. 132.
    Stone, H. A., Briles, W. E., and McGibbon, W. H., The influence of the major histocompatibility locus on Marek's disease in the chicken, in: Avian Immunology, pp. 299–307. Ed A. A. Benedict. Plenum, New York 1977.Google Scholar
  133. 133.
    Storb, U., Immunoglobulin transgenic mice. A. Rev. Immun.5 (1987) 151–174.Google Scholar
  134. 134.
    Takajama, K. M., Kurijama, S., Weiss, S., Chada, K., Inouye, S., and Inouye, M., Antisense RNA-mediated inhibition of viral infection in tissue culture and transgenic mice. UCLA Symposium on Molec. Biol. of RNA94 (1989) 299–311.Google Scholar
  135. 135.
    Templeton, J. W., Estes, D. M., Price, R. E., Smith III, R., and Adams, L. G., Immunogenetics of natural resistance to bovine brucellosis. Proc. 4th World Congr. Genet. appl. Livest. Prod.16 (1990) 396–399.Google Scholar
  136. 136.
    Tissot, R. G., Beattie, C. W., and Amoss, M. S., Inheritance of sinclair swine cutaneous malignant melanoma. Cancer Res.47 (1987) 5542–5545.PubMedGoogle Scholar
  137. 137.
    Trono, D., Feinberg, M. B., and Baltimore, D., HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell59 (1989) 113–120.PubMedGoogle Scholar
  138. 138.
    Trowsdale, J., Molecular genetics of the MHC. Immunology,6, suppl. 1 (1988) 21–23.Google Scholar
  139. 139.
    Vaiman, M., Possible effects of the pig SLAA complex on physiological performances, in: Improving Genetic Disease Resistance in Farm Animals, pp. 124–133. Eds A. J. van der Zijpp and W. Sybesma. Kluwer Academic Publishers, Dordrecht 1989.Google Scholar
  140. 140.
    Van der Zijpp, A. J., and Sybesma, W., eds, Improving Genetic Disease Resistance in Farm Animals. Kluwer Academic Publishers, Dordrecht 1989.Google Scholar
  141. 141.
    Wagner, E. F., On transferring genes into stem cells and mice. EMBO J.9 (1990) 3025–3032.Google Scholar
  142. 142.
    Wakelin, D., Genetic control of susceptibility and resistance to parasitic infections. Adv. Parasit.16 (1978) 219–308.Google Scholar
  143. 143.
    Walder, J., Antisense DNA and RNA progress and prospects. Genes Devel.2 (1988) 502–505.PubMedGoogle Scholar
  144. 144.
    Warner, C. M., Meeker, D. L., and Rothschild, M. F., Genetic control of immune responsiveness: a review of its use as a tool for selection for disease resistance. J. Anim. Sci.64 (1987) 394–406.PubMedGoogle Scholar
  145. 145.
    Watkins, P. C., Restriction fragment length polymorphism (RFLP): applications in human chromosome mapping and genetic disease research. Bio Techniques6 (1988) 310–324.Google Scholar
  146. 146.
    Weidle, U. H., Lenz, H., and Brem, G., Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits and pigs. Gene98 (1991) 185–191.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • M. Müller
    • 1
  • G. Brem
    • 1
  1. 1.Institut für Molekulare TierzuchtLudwig-Maximilians-Universität MünchenMünchen 22Germany

Personalised recommendations