Skip to main content
Log in

Production of pharmaceutical proteins in milk

  • Multi-author Review
  • Transgenic vertebrates
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

There is every reason to expect that it will be possible within the next few years to begin to use farm animals to produce large quantities of some of the human proteins that are needed for the treatment of disease. Revolutionary new opportunities for the production of novel proteins in milk have been created by the development of methods for gene transfer. Exploitation of these opportunities depends upon selection and cloning of milk protein genes and identification of the sequences that govern tissue specific hormonally induced expression in the mammary gland. Studies with three genes, ovine β-lactoglobulin, rat β-casein and whey acidic protein of rat and mouse, suggest that they may all meet this requirement. Fragments of the ovine β-lactoglobulin, murine whey acidic protein and rabbit β-casein genes have directed production of novel proteins in the milk of transgenic mice, sheep, rabbits and pigs. The proteins were biologically active and usually co-migrated with authentic proteins. In early experiments, protein concentration was low, but our recent observations suggest that fusion genes containing genomic clones direct production of concentrations of protein that are suitable for commercial exploitation. In the longer term, two approaches may offer the potential of more reliable expression. Control elements capable of directing expression that is independent of site of insertion of the gene, but dependent on the number of copies of the gene, have been identified for a small number of genes. The availability of such elements for the milk protein genes would increase the reliability of gene expression considerably. Alternatively, targeted mutation of genes may allow the insertion of coding sequences within an existing gene so avoiding position effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S., and Clark, A. J., Characterisation of the gene encoding ovine β-lactoglobulin. J. molec. Biol.199 (1988) 415–426.

    Article  CAS  PubMed  Google Scholar 

  2. Andres, A. C., Schönenberger, C. A., Groner, B., Hennighausen, L., LeMeur, M. and Gerlinger, P., Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal; regulation, and tumor induction in transgenic mice. Proc. natl Acad. Sci.84 (1987) 1299–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andres, A. C., van der Valk, M. A., Schönenberger, C. A., Flückiger, F., LeMeur, M., Gerlinger, P., and Groner, B., Ha-ras and c-myc oncogene expression interfere with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Devel.2 (1988) 1486–1495.

    Article  CAS  PubMed  Google Scholar 

  4. Anson, D. S., Austen, D. E. G., and Brownlee, G. G., Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells. Nature315 (1985) 683–685.

    Article  CAS  PubMed  Google Scholar 

  5. Archibald, A. L., McClenaghan, M., Hornsey, V., Simons, J. P., and Clark, A. J., Highlevel expression of biologically active human α1-antitrypsin in the milk of transgenic mice. Proc. natl Acad. Sci.87 (1990) 5178–5182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayna, E. M., and Rosen, J. M., Tissue specific, high level expression of the rat whey acidic protein gene in transgenic mice. Nucl. Acid Res.18 (1990) 2977–2985.

    Article  CAS  Google Scholar 

  7. Bissel, M. J., and Hall, H. G., Form and function in the mammary gland. The role of the extracellular matrix, in: The Mammary Gland; Development, Regulation and Function, pp. 97–146. Eds M. C. Neville and C. W. Daniel. Plenum Press, New York 1987.

    Chapter  Google Scholar 

  8. Brinster, R. L., Allen, J. M., Behringer, R. B., Gelinas, R. E., and Palmiter, R. D., Introns increase transcriptional efficiency in transgenic mice. Proc. natl Acad. Sci.85 (1988) 836–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brownlee, G. G., The molecular pathology of haemophilia B Biochem. Soc. Trans.15 (1987) 1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bühler, T., Bruyere, Th., Went, D. F., Stranzinger, G., and Bürki, K., Rabbit β-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Biotechnology8 (1989) 140–143.

    Google Scholar 

  11. Burdon, T., Wall, R. J., Sankaran, L., and Hennighausen, L., J. biol. Chem. (1991) in press.

  12. Campbell, S. M., Rosen, J. M., Hennighausen, L., Strech-Jurk, U., and Spippel, A. E., Comparison of the whey acidic protein genes of the rat and mouse. Nucl. Acid Res.12 (1984) 8685–8697.

    Article  CAS  Google Scholar 

  13. Capecchi, M. R., Altering the genome by homologous recombination. Science244 (1989) 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  14. Cartwright, T., Isolation and purification of products from animal cells. Trends Biotechnol.5 (1987) 25–30.

    Article  CAS  Google Scholar 

  15. Choo, K. H., Raphael, K., McAdam, W., and Peterson, M. G., Expression of active human clotting factor IX in transgenic mice: use of cDNA with complete mRNA sequence. Nucl. Acids Res.15 (1987) 871–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark, A. J., Bessos, H., Bishop, J. O., Brown, P., Harris, S., Lathe, R., McClenaghan, M., Prowse, C., Simons, J. P., Whitelaw, C. B. A., and Wilmut, I., Expression of human antihemophilic factor IX in the milk of transgenic sheep. Biotechnology7 (1989) 487–492.

    CAS  Google Scholar 

  17. Dalboge, H., Dahl, H. H. M., Pedersen, J., Hansen, J. W., and Christensen, T., A novel enzymatic method for production of authentic hGH from anEscherichia coli produced hGH precursor. Biotechnology5 (1987) 161–166.

    Google Scholar 

  18. Gordon, K., Lee, E., Vitale, J. A., Smith, A., Westphal, H., and Hennighausen, L., Production of human tissue plasminogen activator in transgenic mouse milk. Biotechnology5 (1987) 1183–1187.

    CAS  Google Scholar 

  19. Grosveld, F., Greaves, D., Philipsen, S., Talbot, D., Pruzina, S., deBoer, E., Hanscombe, O., Belhumeur, P., Hurst, J., Whyatt, D., Antoniou, M., Mignotte, V., Dillon, N., Lindenbaum, M., and Strouboulis, J., The dominant control region of the human β-globin domain. Proc. 4th World Congress Genetics Applied to Livestock Production, XIII (1990) 49–57.

    Google Scholar 

  20. Harris, S., Ali, S., Anderson, S., Archibald, A. L., and Clark, A. J., Complete nucleotide sequence of the genomic ovine β-lactoglobulin gene. Nucl. Acid Res.16 (1988) 10379–10380.

    Article  CAS  Google Scholar 

  21. Harris, S., McClenaghan, M., Simons, J. P., Ali, S., and Clark, A. J., Gene expression in the mammary gland. J. Reprod. Fert.88 (1990) 707–715.

    Article  CAS  Google Scholar 

  22. Hennighausen, L. G., and Sippel, A. E., Mouse whey acidic protein is a novel member of the family of ‘four-sulfide core’ proteins. Nucl. Acid. Res.10 (1982) 2677–2684.

    Article  CAS  Google Scholar 

  23. Jimenez-Flores, R., and Richardson, T., Genetic engineering of the caseins to modify the behaviour of milk during processing: A review. J. Dairy Sci.71 (1988) 2640–2654.

    Article  CAS  Google Scholar 

  24. Kang, Y., Jimenez-Flores, R., and Richardson, T., Casein genes and genetic engineering of the caseins, in: Genetic Engineering of Animals, pp. 95–111. Eds J. W. Evans and A. Hollaender. Plenum Press, New York 1986.

    Chapter  Google Scholar 

  25. Kaufman, R. J., Wasley, L. C., Furie, B. C., Furie, B., and Shoemaker, C. B., Expression, purification and characterisation of recombinant gamma-carboxylated factor IX synthesised in Chinese hamster ovary cells. J. biol. Chem.261 (1986) 9622–9628.

    Article  CAS  PubMed  Google Scholar 

  26. Lathe, R., Clark, A. J., Archibald, A. L., Bishop, J. O., Simons, P., and Wilmut, I., Novel products from livestock, in: Exploiting New Technologies in Animal Breeding, pp. 99–102. Eds. C. Smith, J. W. B. King and J. C. McKay. Oxford University Press, Oxford 1986.

    Google Scholar 

  27. Lee, K.-F., DeMayo, J., Aitee, S. H., and Rosen, J. R., Tissue-specific expression of the rat β-casein gene in transgenic mice. Nucl. Acid Res.16 (1988) 1027–1041.

    Article  CAS  Google Scholar 

  28. Lubon, H., and Hennighausen, L., Nuclear proteins from lactating mammary glands bind to the promoter of a milk protein gene. Nucl. Acid Res.15 (1987) 2103–2121.

    Article  CAS  Google Scholar 

  29. Meade, H., Gates, L., Kacy, E., and Lonberg, N., Bovine αS1-casein gene sequences direct high level expression of active human urokinase in mouse milk. Biotechnology,8 (1990) 443–446.

    CAS  PubMed  Google Scholar 

  30. Mercier, J.-C., Genetic engineering applied to milk producing animals: some expectations, in: Exploiting New Technologies in Animal Breeding, pp. 121–131. Eds C. Smith, J. W. B. King and J. C. McKay. Oxford University Press, Oxford 1986.

    Google Scholar 

  31. Mercier, J.-C., Gaye, P., Soulier, S., Hue-Delahaie, D., and Vilotte, J.-L., Construction and identification of recombinant plasmids carrying cDNAs coding for α-S1, α-S2,k-casein and β-lactoglobulin. Biochimie67 (1985) 959–971.

    Article  CAS  PubMed  Google Scholar 

  32. Miller, L. K., Baculoviruses for foreign gene expression in insect cells, in: Vectors: a Survey of Molecular Cloning Vectors and Their Uses, pp. 457–465. Eds R. L. Rodriguez and D. T. Denhardt Butterworths, Boston 1988.

    Chapter  Google Scholar 

  33. Notarianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J., Derivation of pluripotent, embryonic cell lines from porcine and ovine blastocysts. Proc. 4th World Congress Genetics Applied to Livestock Production, XIII (1990), 58–64.

    Google Scholar 

  34. Palmiter, R. D., and Brinster, R. L., Germline transformation of mice. A. Rev. Genet.20 (1986) 465–499.

    Article  CAS  Google Scholar 

  35. Papiz, M. Z., Sawyer, L., Eliopolous, E. E., North, A. C. T., Findlay, J. B. C., Sivaprasadarao, R., Jones, T. A., Newcomer, M. E., and Kraulis, P. J., The structure of β-lactoglobulin and its similarity to retinol binding protein. Nature324 (1986) 383–385.

    Article  CAS  PubMed  Google Scholar 

  36. Pittius, C. W., Hennighausen, L., Lee, E., Westphal, H., Nicols, E., Vitale, J., and Gordon, K., A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc. natl Acad. Sci. USA85 (1988) 5874–5878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Primrose, S. B., Modern Biotechnology. Blackwell Scientific Publications, Oxford 1987.

    Google Scholar 

  38. Pursel, V. G., Pinkert, C. A., Miller, K. F., Bolt, D. J., Campbell, R. G., Palmiter, R. D., Brinster, R. L., and Hammer, R. E., Genetic engineering of livestock. Science244 (1989) 1281–1288.

    Article  CAS  PubMed  Google Scholar 

  39. Rosen, J. M., Milk protein gene structure and function, in: The Mammary Gland; Development, Regulation and Function, pp. 301–322. Eds M. C. Neville and C. W. Daniel. Plenum Press, New York 1987.

    Chapter  Google Scholar 

  40. Sarmientos, P., Duchesne, M., Denefle, P., Boiziau, J., Fromage, N., Delporte, N., Parker, F., Lelievre, Y., Mayaux, J.-F., and Cartwright, T., Synthesis and purification of active human tissue plasminogen activator fromEscherichia coli. Biotechnology7 (1989) 495–501.

    CAS  Google Scholar 

  41. Schönenberger, C.-A., Andres, A.-C., Groner, B., van der Valk, M., LeMeur, M., and Gerlinger, P., Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J.7 (1988) 169–175.

    Article  Google Scholar 

  42. Stief, A., Winter, D. M., Straitling, W. H., and Sippel, A. E., A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature341 (1989) 343–345.

    Article  CAS  PubMed  Google Scholar 

  43. Simons, J. P., McClenaghan, M., and Clark, A. J., Alteration of the quality of milk by expression of sheep β-lactoglobulin in transgenic mice. Nature328 (1987) 530–532.

    Article  CAS  PubMed  Google Scholar 

  44. Simons, J. P., Wilmut, I., Clark, A. J., Archibald, A. L., Bishop, J. O., and Lathe, R., Gene transfer into sheep. Biotechnology6 (1988) 179–183.

    CAS  Google Scholar 

  45. Valancius, V., and Smithies, O., Testing an ‘in-out’ targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Molec. cell. Biol.11 (1991) 1402–1408.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vilotte, J.-L., Soulier, S., Stinnarkre, M.-G., Massoud, M., and Mercier, J.-C., Efficient expression of bovine α-lactalbumin in trangenic mice. Eur. J. Biochem.186 (1989) 43–48.

    Article  CAS  PubMed  Google Scholar 

  47. Wall, R. J., Pursel, V. G., Shamay, A., McKnight, R. A., Pittius, C. W., and Hennighausen, L., High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. natl Acad. Sci.88 (1991) 1696–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilmut, I., Archibald, A. L., McClenaghan, M., Simons, J. P., Whitelaw, C. B. A., and Clark, A. J., Modification of milk composition. J. Reprod. Fert. suppl.41 (1990) 135–146.

    CAS  Google Scholar 

  49. Wilmut, I., and Clark, A. J., Basic techniques for transgenesis. J. Reprod. Fert. suppl.43 (1991) 265–275.

    CAS  Google Scholar 

  50. Yu, S.-H., Deen, K. C., Lee, E., Hennighausen, L., Sweet, R. W., Rosenberg, M., and Westphal, H., Functional human CD4 protein produced in milk of transgenic mice. Molec. Biol. Med.6 (1989) 255–261.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilmut, I., Archibald, A.L., McClenaghan, M. et al. Production of pharmaceutical proteins in milk. Experientia 47, 905–912 (1991). https://doi.org/10.1007/BF01929881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01929881

Key words

Navigation