Zeitschrift für Operations-Research

, Volume 32, Issue 3–4, pp 145–164 | Cite as

Visibility graphs and obstacle-avoiding shortest paths

  • H. Alt
  • E. Welzl


Two closely related problems in Computational Geometry are determining visibility graphs and shortest paths in a two- or three-dimensional environment containing obstacles. Applications are within Computer Graphics and Robotics. We give a survey on recent research done on efficient algorithms for these problems.

Key words

Visibility Graphs Shortest Paths Computational Geometry Efficient Algorithms 


Zwei eng miteinander verwandte Probleme in der algorithmischen Geometrie sind die Bestimmung von Sichtbarkeitsgraphen und kürzesten Wegen in einer zwei- oder dreidimensionalen Umgebung mit Hindernissen. Anwendungen finden sich insbesondere auf den Gebieten Computergrafik und Robotik. Diese Arbeit gibt einen Überblick über kürzlich erschienene Arbeiten zum Entwurf effizienter Algorithmen für diese Probleme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-WesleyGoogle Scholar
  2. [2]
    Asano T, Asano T, Guibas L, Hershberger J, Imai H (1986) Visibility of disjoint polygons. Algorithmica 1:49–63MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Baker B (1985) Shortest paths with unit clearance among polygonal obstacles. SIAM Conference on Geometrical Modelling and RoboticsGoogle Scholar
  4. [4]
    Canny J (1987) A new algebraic method for robot motion planning and real geometry. In: Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pp 39–48Google Scholar
  5. [5]
    Canny J, Reif J (1987) New lower bound techniques for robot motion planning problems. In: Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pp 49–60Google Scholar
  6. [6]
    Chew LP (1987) Planar graphs and sparse graphs for efficient motion planning in the plane. ManuscriptGoogle Scholar
  7. [7]
    Chew LP (1985) Planning the shortest path for a disk inO(n 2 logn) time. In: Proceedings of the 1st Annual Symposium on Computational Geometry, pp 214–220Google Scholar
  8. [8]
    Clarkson K (1987) Approximation algorithms for shortest path motion planning. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp 56–65Google Scholar
  9. [9]
    Clarkson K, Kapoor S, Vaidya P (1987) Rectilinear shortest paths through polygonal obstacles inO(n log2 n) time. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp 251–257Google Scholar
  10. [10]
    Collins GE (1975) Quantifier elimination for real closed fields by cylindric algebraic decomposition. In: Proceedings 2nd GI-Conference on Automata Theory and Formal Languages, Lecture Notes in Computer Science 35, Springer-Verlag, pp 134–183Google Scholar
  11. [11]
    Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer-VerlagGoogle Scholar
  12. [12]
    Edelsbrunner H, Guibas L (1986) Topologically sweeping in an arrangement. In: Proceedings of the 18th ACM Symposium on Theory of Consumpting, pp 389–403Google Scholar
  13. [13]
    Fredman M, Tarjan R (1987) Fibonacci heaps and their uses in improved network optimization algorithms. J of the Association for Computing Machinery 34:596–615MathSciNetCrossRefGoogle Scholar
  14. [14]
    Ghosh SK, Mount DM (1987) An output sensitive algorithm for computing visibility graphs. In: Proceedings of the 28th Annual Symposium on Foundations of Computer Science, pp 11–19Google Scholar
  15. [15]
    Guibas LJ, Hershberger J (1987) Optimal shortest path queries in a simple polygon. In: Proceedings of the 9rd Annual Symposium on Computational Geometry, pp 50–63Google Scholar
  16. [16]
    Hershberger JE (1987) Efficient algorithms for shortest path and visibility problems. Dissertation, Stanford UniversityGoogle Scholar
  17. [17]
    Hershberger JE, Guibas LJ (1986) AnO(n 2) shortest path algorithm for a non-rotating convex body. Technical Report, DEC Systems Research CenterGoogle Scholar
  18. [18]
    Lee DT (1978) Proximity and reachability in the plane. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  19. [19]
    Lee DT, Preparata FP (1984) Euclidean shortest paths in the presence of rectilinear barriers. Networks 14:393–410MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Lozano-Perez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM 22:560–570CrossRefGoogle Scholar
  21. [21]
    Masser M (1988) Algorithmen zur Konstruktion von Sichtbarkeitsgraphen. Diplomarbeit, Institutes for Information Processing, IIG, Technical University of Graz, in preparationGoogle Scholar
  22. [22]
    Mehlhorn K (1984) Data structures and algorithms 2: graph algorithms and NP-completeness. Springer-VerlagGoogle Scholar
  23. [23]
    Mehlhorn K (1984) Data structures and algorithms 3: multidimensional searching and computational geometry. Springer-VerlagGoogle Scholar
  24. [24]
    Mitchell JSB, Papadimitriou CH (1987) The weighted region problem. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp 30–38Google Scholar
  25. [25]
    Mitchel JSB, Mount DM, Papadimitriou CH (1987) The discrete geodesic problem. SIAM J Computing 23:647–668MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Overmars M, Welzl E (1987) Construction of sparse visibility graphs. Report RUU-CS-87-9, Department of Computer Science, University of UtrechtGoogle Scholar
  27. [27]
    Overmars M, Welzl E (1988) New methods for computing visibility graphs. To appear in: Proceedings of the 4th Annual Symposium on Computational GeometryGoogle Scholar
  28. [28]
    Papadimitriou CH (1985) An algorithm for shortest path motion in three dimensions. Inform Process Lett 20:259–263MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Papadimitriou CH, Silverberg EB (1986) Optimal piecewise linear motion of an object among obstacles. Technical Report, Dept. of Operations Research, Stanford UniversityGoogle Scholar
  30. [30]
    Preparata FP, Shamos MI (1985) Computational geometry. Springer VerlagGoogle Scholar
  31. [31]
    Reif J, Storer JA (1985) Shortest paths in Euclidean space with polyhedral obstacles. Technical Report CS-85-121, Computer Science Department, Brandeis UniversityGoogle Scholar
  32. [32]
    Rohner H (1986) Shortest paths in the plane with convex polygonal obstacles. Inform Process Lett 23:71–76MathSciNetCrossRefGoogle Scholar
  33. [33]
    Schorr A, Sharir M (1986) On shortest paths in polyhedral spaces. SIAM J Computing 15:193–215MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Tarjan RE, van Wyk C (1986) AnO(n log log n)-time algorithm for triangulating simple polygons. ManuscriptGoogle Scholar
  35. [35]
    Welzl E (1985) Constructing the visibility graph forn line segments inO(n 2) time. Inform Process Lett 20:167–171MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Physica-Verlag 1988

Authors and Affiliations

  • H. Alt
    • 1
  • E. Welzl
    • 1
  1. 1.Fachbereich MathematikFreie Universität BerlinBerlin 33FRG

Personalised recommendations