Skip to main content
Log in

Transgenic animal models of sickle cell disease

  • Multi-author Reviews
  • Developments in Sickle Cell Anemia Research, Part I
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

An animal model which allows study of chronic processes occurring in sickle cell disease has finally been realized with the development of several lines of transgenic mice which express high levels of βs or βs-variants in their red cells. The red cells of all mouse lines exhibit characteristic sickle shapes on deoxygenation and most lines have enlarged spleens and mildly elevated reticulocytes in adult mice; both of these properties are suggestive of enhanced red cell destruction and erythropoiesis. However, all lines examined to date have normal hemoglobin levels in adult mice. In one mouse line under ambient conditions, retinopathy and abnormal renal function have been observed and in the same line under hypoxic conditions, anemia, irreversibly sickled cell formation, and urine concentrating defect have been observed. The current mouse lines will allow some aspects of sickle cell disease to be studied, but sigificant improvements can still be made in the transgenic mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, S., Kaul, D. K., and Nagel, R. L., Microvascular determinants of blood flow behavior and HbSS erythrocyte plugging in microcirculation. Blood Cells8 (1982) 127–137.

    PubMed  Google Scholar 

  2. Brugnara, C., Bunn, H. F., and Tosteson, D. C., Regulation of erythrocyte cation and water content in sickle cell anemia. Science232 (1986) 388–390.

    PubMed  Google Scholar 

  3. Brugnara, C., and Tosteson, D. C., Cell volume. K+ transport, and cell density in human erythrocytes. Am. J. Physiol.252 (1987) C269–276.

    Google Scholar 

  4. Canessa, M., Fabry, M. F., Blumenfeld, N., and Nagel, R. L., Volume-stimulated. Cl(−)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J. membr. Biol.97 (1987) 97–105.

    Google Scholar 

  5. Canessa, M., Spalvins, A., and Nagel, R. L., Volume-dependent and NEM-stimulated K+. Cl-transport is elevated in oxygenated SS, SC, and CC human red cells. FEBS Lett.200 (1986) 197–202.

    PubMed  Google Scholar 

  6. Castro, O., Orlin, J., Rosen, M. W., and Finch, S. C., Survival of human sickle-cell erythrocytes in heterologous species: response to variations in oxygen tension. Proc. natl. Acad. Sci. USA70 (1973) 2356–2359.

    PubMed  Google Scholar 

  7. Castro, O., Osbaldiston, G. W., Aponte, L., Roth, R., Orlin, J., and Finch, S. C., Oxygen-dependent circulation of sickle erythrocytes. J. lab. clin. Med.88 (1976) 732–744.

    PubMed  Google Scholar 

  8. Castro, O., Socha, W. W., and Moor Jankowski, J., Human sickle erythrocytes: survival in chimpanzees.J. med. Primatol. 11 (1982) 119–125.

    PubMed  Google Scholar 

  9. Eaton, W. A., and Hofrichter, J., Sickle cell hemoglobin polymerization. Adv. Protein Chem.40 (1990) 63–279.

    PubMed  Google Scholar 

  10. Fabry, M. E., Nagel, R. L., Pachnis, A., Suzuka, S. M., and Costantini, F.: High expression of human βs and α-globins in transgenic mice: Hemoglobin composition and hematological consequences. Proc. natl. Acad. Sci.89 (1992) 12150–12154.

    PubMed  Google Scholar 

  11. Fabry, M. E., Costantini, F., Pachnis, A., Suzuka, S. M., Bank, N., Aynedijian, H. S., Factor, S., and Nagel, R. L., High expression of human βs and α-genes in transgenic mice: Red cell abnormalities, organ damage, and the effect of hypoxia. Proc. natl Acad. Sci.89 (1992) 12155–12159.

    PubMed  Google Scholar 

  12. Fabry, M. E., Costantini, F. M., Pachnis, A., Hofrichter, J., Christoph, G. W., Factor, S. M., and Nagel, R. L., A transgenic mouse line expressing a high level of HbS. Clin. Res.39 (1991)

  13. Fabry, M. E., Fine, E., Rajanaygam, V., Factor, S. M., Gore, J. C., Sylla, M., and Nagel, R. L., Demonstration of endothelial adhesion of sickle cells in-vivo: a distinct role for deformable sickle cell discocytes. Blood79 (1992) 1602–1611.

    PubMed  Google Scholar 

  14. Fabry, M. E., Kaul, D. K., Raventos Suarez, C., Chang, H., and Nagel, R. L., SC erythrocytes have an abnormally high intracellular hemoglobin concentration. Pathophysiological consequences. J. clin. Invest.70 (1982) 1315–1319.

    PubMed  Google Scholar 

  15. Fabry, M. E., Rajanayagam, V., Fine, E., Holland, S., Gore, J. C., Nagel, R. L., and Kaul, D. K., Modeling sickle cell vasooclusion in the rat leg: quantification of trapped sickle cells and correlation with 31P metabolic and 1H magnetic resonance imaging changes. Proc. natl Acad. Sci. USA86 (1989) 3808–3812.

    PubMed  Google Scholar 

  16. Fomufod, A. K., Castro, O., Slaughter, L. J., Cothran, L. N., Hayes, N. R., and Africano, E., Massive sequestration of human sickle cells after transfusion to a baboon. J. med. Primato.15 (1986) 71–79.

    Google Scholar 

  17. Greaves, D. R., Fraser, P., Vidal, M. A., Hedges, M. A., Ropers, D., Luzzatto, L., and Grosveld, F., A transgenic mouse model of sickle cell disorder. Nature343 (1990) 183–185.

    PubMed  Google Scholar 

  18. Hebbel, R. P., Schwartz, R. S., and Mohandas, N., The adhesive sickle erythrocyte: cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes. Clin. Haematol.14 (1985) 141–161.

    PubMed  Google Scholar 

  19. Hebbel, R. P., Yamada, O., Moldow, C. F., Jacob, H. S., White, J. G., and Eaton, J. W., Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. J. clin. Invest.65 (1980) 154–160.

    PubMed  Google Scholar 

  20. Hofrichter, J., Ross, P. D., and Eaton, W. A., Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc. natl. Acad. Sci. USA71 (1974) 4864–4868.

    PubMed  Google Scholar 

  21. Kaul, D. K., Fabry, M. E., and Nagel, R. L., Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc. natl Acad. Sci. USA86 (1989) 3356–3360.

    PubMed  Google Scholar 

  22. Kurantsin Mills, J., Jacobs, H. M., Klug, P. P., and Lessin, L. S., Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat. Microvasc. Res.34 (1987) 152–167.

    Article  PubMed  Google Scholar 

  23. Rhoda, M. D., Domenget, C., Vidaud, M., Bardakdjian Michau, J., Rouyer Fessard, P., Rosa, J., and Beuzard, Y., Mouse alpha chains inhibit polymerization of hemoglobin induced by human beta S or beta S Antilles chains. Biochim. biophys. Acta952 (1988) 208–212.

    PubMed  Google Scholar 

  24. Romero, J., Fabry, M. E., Costantini, F. M., Nagel, R. L. and Canessa, M., Deoxy-stimulated K+ efflux and K:Cl contransport in RBC of a transgenic mouse expressing high levels of human HbS. Br. J. Haematol. (Abstract) (1992) in press.

  25. Rubin, E. M., Witkowska, H. E., Spangler, E., Curtin, P., and Lubin, B. H. Hypoxia-induced in vivo sickling of transgenic mouse red cells. J. clin. Invest.87 (1991) 639–647.

    PubMed  Google Scholar 

  26. Ryan, T. M., Townes, T. M., Reilly, M. P., Asakura, T., Palmiter, R. P., and Behringer, R. R., Human sickle hemoglobin in transgenic mice. Science247 (1990) 566–568.

    PubMed  Google Scholar 

  27. Tosteson, D. C., Carlsen, E., and Dunham, E. T., The effect of sickling on ion transport. I. The effect of sickling on potassium transport. J. gen. Physiol.39 (1955) 31–53.

    Article  PubMed  Google Scholar 

  28. Trudel, M., Saadane, N., Garel, M-C., Bardakdjuan-Michau, J., Blouquit, Y., Guerquin-Kern, J-L., Rouyer-Fessard, P., Vidaud, D., Pachniss, A., Romeo, P-H., Beuzard, Y., and Constantini, F. M., Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. EMBO J.10 (1991) 3157–3168.

    PubMed  Google Scholar 

  29. Wick, T. M., Moake, J. L., Udden, M. M., Eskin, S. G., Sears, D. A., and McIntire, L. V., Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J. clin. Invest.80 (1987) 905–910.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabry, M.E. Transgenic animal models of sickle cell disease. Experientia 49, 28–36 (1993). https://doi.org/10.1007/BF01928785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01928785

Key words

Navigation