Experientia

, Volume 49, Issue 1, pp 5–15 | Cite as

Sickle cell vasoocclusion: Many issues and some answers

  • D. K. Kaul
  • R. L. Nagel
Multi-author Reviews Developments in Sickle Cell Anemia Research, Part I

Abstract

The pathophysiology of sickle (SS) cell vasoocclusion is derived from the presence of hemoglobin S (HbS) which forms polymeric fibers in the deoxygenated state. Nevertheless, phenotypic expression of sickle cell disease (i.e., clinical severity) shows marked individual variations and is influenced by genetic modifiers such as epistatic effects of linked and unlinked genes. Furthermore, the polymerization of HbS is central but not the only event, and is more likely a consequence of disruptions of the steady state of flow. The available evidence indicates that the vasoocclusive crisis is a microcirculatory event in which multiple factors could be involved. We present a model of vasoocclusion as a two step process in which adhesion of deformable cells occurs first, followed by obstruction induced by less deformable SS cells. This review discusses, in addition, rheologic and microcirculatory behavior of SS erythrocytes and the interacting role of vascular factors, red cell heterogeneity, deoxygenation rates, and red cell-endothelial interactions in the pathophysiology of SS cell vasoocclusion.

Key words

Sickle erythrocyte vasoocclusion adhesion von Willebrand factor epistatic effects abnormal rheology vascular factors deoxygenation rates red cell heterogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J. G., Benjamin, L., Fryd, S., Gillette, P., Gilman, J., Hellman-Erlingsson, S., Hsu, H., Milner, P. F., Nagel, R. L., Rieder, R. F., Safaya, S., Steinberg, M. H., and Wrightstone, R., Gender and haplotype effects upon hematological and clinical manifestations of sickle cell anemia. Clin. Res.40 (1992) 378a.Google Scholar
  2. 2.
    Asakura, T., and Mayberry, J., Relationship between morphologic characteristics of sickle cells and method of deoxygenation. J. Lab. clin. Med.104 (1984) 987–994.PubMedGoogle Scholar
  3. 3.
    Baez, S., Kaul, D. K., and Nagel, R. L. Microvascular determinants of blood flow behavior and HbSS erythrocyte plugging in microcirculation. Blood Cells8 (1982) 113–126.PubMedGoogle Scholar
  4. 4.
    Bailey, S., Higgs, D. R., Morris, J., and Serjeant, G. R., Is the painful crisis of sickle-cell disease due to sickling? Lancet337 (1991) 735.CrossRefGoogle Scholar
  5. 5.
    Ballas, S. K., Larner, J., Smith, E. D., Surrey, S., Schwartz, E., and Rappaport, E. F., Rhcological predictors of the severity of the painful sickle cell crisis. Blood72 (1988) 1216–1223.PubMedGoogle Scholar
  6. 6.
    Ballas, S. K., and Smith, E. D., Red blood cell changes during the evolution of the sickle cell painful crisis. Blood79 (1992) 2154–2163.PubMedGoogle Scholar
  7. 7.
    Barabino, G. A., McIntire, L. V., Eskin, S. G., Sears, D. A., and Udden, M., Endothelial cell interactions with sickle cells, sickle cell, sickle trait, mechanically injured, and normal crythocytes under controlled flow. Blood70 (1987) 152–157.PubMedGoogle Scholar
  8. 8.
    Baum, K. F., Dunn, D. T., Maude, G. H., and Serjeant, G. R., The painful crisis of homozygous sickle cell disease: a study of risk factors. Archs intern. Med.147 (1987) 1231–1234.CrossRefGoogle Scholar
  9. 9.
    Benesch, R. F., Yung, S., Benesch, R., Mack, J., and Schneider, R. G., α-chain contacts in the polymerization of sickle haemoglobin. Nature260 (1976) 219.PubMedGoogle Scholar
  10. 10.
    Berg, P. E., Mittelman, M., Elion, J., Labie, D., and Schechter, A. N., Increased protein binding to a −530 mutation of the human β-globin gene is associated with decreased β-globin synthesis. Am. J. Hemat.36 (1991) 42–47.PubMedGoogle Scholar
  11. 11.
    Bessis, M., and Mohandas, N., A diffractometric method for the measurement of cellular deformability. Blood Cells1 (1975) 307–313.Google Scholar
  12. 12.
    Billett, H. H., Kim, K., Fabry, M. E., and Nagel, R. L., The percentage of dense red cells does not predict incidence of sickle cell painful crisis. Blood68 (1986) 301–303.PubMedGoogle Scholar
  13. 13.
    Boggs, D. R., Hyde, F., and Strodes, C., An unusual pattern of neutrophil kinetics in sickle cell anemia. Blood41 (1973) 59–65.PubMedGoogle Scholar
  14. 14.
    Bookchin, R. M., Nagel, R. L., and Balazs, T., Gelation of hemoglobin S: Role of hybrid tetramer formation. Nature256 (1975) 667.PubMedGoogle Scholar
  15. 15.
    Briehl, R. W., The rheology of sickle cell hemoglobin. Annls N.Y. Acad. Sci565 (1989) 279–283.Google Scholar
  16. 16.
    Briehl, R. W., and Christopher, G. W., Exponential progress curves and shear in the gelation of hemoglobin S. Prog. clin. biol. Res.240 (1987) 129–149.PubMedGoogle Scholar
  17. 17.
    Brugnara, C., and Tosteson, D. C., Cell volume, K+ transport, and cell density in human erythrocytes. Am. J. Physiol.252 (1987) C269-C276.Google Scholar
  18. 18.
    Burns, E. R., Wilkinson, W. H., and Nagel, R. L., Adherence properties of sickle erythrocytes in dynamic flow systems. J. Lab. clin. Med.104 (1985) 673–678.Google Scholar
  19. 19.
    Canessa, M., Cation transport in hemoglobinopathies. Hematology/Oncology Clinics N. Am.5 (1991) 495–516.Google Scholar
  20. 20.
    Canessa, M., Fabry, M. E., and Blumenfeld, N., Volume-stimulated, Cl-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J. Membr. Biol.97 (1987) 97–105.CrossRefPubMedGoogle Scholar
  21. 21.
    Canessa, M., Fabry, M. E., Blumenfeld, N., and Nagel, R. L., A volume-stimulated, Cl dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J. Membr. Biol.97 (1987) 97–105.CrossRefPubMedGoogle Scholar
  22. 22.
    Canessa, M., Fabry, M. E., Suzuka, S. M., Morgan, K., and Nagel, R. L., Na+/H+ exchange is increased in sickle cell anemia and young normal red cells. J. Membr. Biol.116 (1990) 107–115.CrossRefPubMedGoogle Scholar
  23. 23.
    Chien, S., Hemorheology in disease: pathophysiological significance and therapeutic implications. Clin. Hemorheol.1 (1981) 419–442.Google Scholar
  24. 24.
    Clark, M. R., Mohandas, N., and Shohet, S. B., Deformability of oxygenated irreversibly sickled cells. J. clin. Invest.65 (1980) 189–196.PubMedGoogle Scholar
  25. 25.
    Croizat, H., Billett, H. H., and Nagel, R. L., Heterogeneity in the properties of burst-forming units of erythroid lineage in sickle cell anemia: DNA synthesis and burst-promoting activity production is related to peripheral hemoglobin F levels. Blood75 (1990) 1006–1010.PubMedGoogle Scholar
  26. 26.
    Croizat, H., and Nagel, R. L., Circulating BFU-E in sickle cell anemia: relationship to % HbF and BPA-like activity. Exp. Hemat.16 (1988) 946–949.PubMedGoogle Scholar
  27. 27.
    Croizat, H., and Nagel, R. L., The circulating BFU-E in sickle cell anemia have different growth factor dependency according to HbF level of the patient. Blood76 (1990) 58a.Google Scholar
  28. 28.
    Dover, G. J., Smith, K. D., Chang, Y. P., Shiels, C., and Serjeant, G., Fetal hemoglobin production is controlled by a gene on the X-chromosome in normal adults and sickle cell patients. Blood76, Suppl. 1 (1990) 59a.Google Scholar
  29. 29.
    Eaton, W. A., and Hofrichter, J., Hemoglobin S gelation and sickle cell disease. Blood70 (1987) 1245–1266.PubMedGoogle Scholar
  30. 30.
    Eaton, W. A., and Hofrichter, J., Sickle cell hemoglobin polymerization. Adv. Protein Chem.40 (1990) 63–279.PubMedGoogle Scholar
  31. 31.
    Eaton, W. A., Hofrichter, J., and Ross, P. D., Delay time of gelation: a possible determinant of clinical severity in sickle cell disease. Blood47 (1976) 621–627.PubMedGoogle Scholar
  32. 32.
    Elion, J., Berg, P., Trabuchet, G., Schecter, A., Krishnamoorthy, R., and Labie, D., Is polymorphism 0.5 kb 5′ to the β-globin gene relevant to the βs gene expression? Blood74 (1989) 527a.Google Scholar
  33. 33.
    Embury, S. H., The interaction of α-thalassemia with sickle cell anemia. Hemoglobin12 (1988) 509–517.PubMedGoogle Scholar
  34. 34.
    Embury, S. H., Dozy, Z. M., Miller, J., Davis, J. R. Jr, Kleman, K. M., Priesler, H., Vichinsky, E., Lande, W. N., Lubin, B. H., Kan, Y. W., and Mentzer, W. C., Concurrent sickle-cell anemia and α-thalassemia: effect on severity of anemia. N. Engl. J. Med.306 (1982) 270–274.PubMedGoogle Scholar
  35. 35.
    Evans, E., Mohandas, N., and Leung, A., Static and dynamic rigidities of normal and sickle erythrocytes. J. clin. Invest.73 (1984) 477–488.PubMedGoogle Scholar
  36. 36.
    Fabry, M. E., Benjamin, L., Lawrence, C., and Nagel, R. L., An objective sign of painful crisis in sickle cell anemia: concomitant reduction in high density red cells. Blood64 (1984) 559–563.PubMedGoogle Scholar
  37. 37.
    Fabry, M. E., Fine, E., Rajanayagam, V., Factor, S. M., Gore, J., Sylla, M., and Nagel, R. L., Demonstration of endothelial adhesion of sickle cells in vivo: A distinct role for deformable SS discocytes. Blood79 (1992) 1602–1611.PubMedGoogle Scholar
  38. 38.
    Fabry, M. E., Mears, J. G., Patel, P., Schaefer-Rego, K., Carmichael, L. D., Martinez, G., and Nagel, R. L., Dense cells in sickle cell anemia: the effects of gene interaction. Blood64 (1984) 1042–1046.PubMedGoogle Scholar
  39. 39.
    Fabry, M. E., and Nagel, R. L., Heterogeneity of red cells in sicklers: a characteristic with pathophysiological implications. Blood Cells8 (1982) 9–15.PubMedGoogle Scholar
  40. 40.
    Fabry, M. E., Rajanayagam, V., Fine, E., Holland, S., Gore, J. C., Nagel, R. L., and Kaul, D. K., Modelling sickle cell vaso-occlusion in the rat leg: quantification of trapped sickle cells and correlation with P-31 metabolic and H-1 magnetic resonance imaging changes. Proc. natl Acad. Sci. USA86 (1989) 3808–3812.PubMedGoogle Scholar
  41. 41.
    Ferrone, F. A., Kinetic models and the pathophysiology of sickle cell disease. Annls N. Y. Acad. Sci.565 (1989) 63–74.Google Scholar
  42. 42.
    Grabowski, E. F., Sickled erythrocytes adhere to endothelial cell monolayers (ECM's) exposed to flowing blood. Prog. clin. biol. Res.240 (1987) 167–179.PubMedGoogle Scholar
  43. 43.
    Greenberg, M. S., and Kass, E. H., Studies on the destruction of red blood cells: XIII. Observations on the role of pH in pathogenesis and treatment of painful crisis in sickle cell disease. Archs intern. Med.101 (1958) 355–363.Google Scholar
  44. 44.
    Hadin, R. I., and Wagner, D. D., Molecular and cellular biology of von Willebrand factor. Prog. Hemost. Thromb.9 (1989) 233–259.PubMedGoogle Scholar
  45. 45.
    Hahn, J. A., Messe, M. J., and Bradley, T. B., Ultrastructure of sickling and unsickling in time-lapse studies. Br. J. Hemat.34 (1976) 559–565.Google Scholar
  46. 46.
    Hall, A. C., and Ellory, J. C., Evidence for the presence of volume sensitive KCl cotransport in ‘young’ human red cells. Biochem. biophys. Acta858 (1986) 317–320.PubMedGoogle Scholar
  47. 47.
    Hamilton, K. K., and Sims, P. J., Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. J. clin. Invest.79 (1987) 600–608.PubMedGoogle Scholar
  48. 48.
    Hebbel, R. P., Auto-oxidation and a membrane-associated ‘Fenton reagent’: a possibile explanation for the development of membrane lesions in sickle cells. Clinic Haemat.14 (1985) 129–140.Google Scholar
  49. 49.
    Hebbel, R. P., Erythrocyte antioxidants and membrane vulnerability. J. Lab. clin. Med.107 (1986) 401–404.PubMedGoogle Scholar
  50. 50.
    Hebbel, R. P., The sickle erythrocyte in double jeopardy: auto-oxidation and iron decompartmentalization. Semin. Hemat.27 (1990) 51–69.PubMedGoogle Scholar
  51. 51.
    Hebbel, R. P., Boogaerts, M. A. B., Eaton, J. W., and Steinberg, M. H., Erythrocyte adherence in sickle cell disorders. N. Engl. J. Med.302 (1980) 992–995.PubMedGoogle Scholar
  52. 52.
    Hebbel, R. P., Eaton, J. W., and Balasingam, M., Spontaneous oxygen radical generation by sickle erythrocytes. J. clin. Invest.70 (1982) 1253–1259.PubMedGoogle Scholar
  53. 53.
    Hoover, R., Rubin, R., Wise, G., and Warren, R., Adhesion of normal and sickle erythrocytes to endothelial monolayers. Blood54 (1979) 872–876.PubMedGoogle Scholar
  54. 54.
    Kaul, D. K., Baez, S., and Nagel, R. L., Flow properties of oxygenated HbS and HbC erythrocytes in the isolated vasculature of the rat. A contribution to the hemorheology of hemoglobinopathies. Clin. Hemorheol.1 (1981) 73–86.Google Scholar
  55. 55.
    Kaul, D. K., Fabry, M. E., and Nagel, R. L., Vaso-occlusion by sickle cells: evidence for selective trapping of dense red cells. Blood68 (1986) 1162–1166.PubMedGoogle Scholar
  56. 56.
    Kaul, D. K., Fabry, M. E., and Nagel, R. L., Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc. natl Acad. Sci. USA86 (1989) 3356–3360.PubMedGoogle Scholar
  57. 57.
    Kaul, D. K., Fabry, M. E., and Nagel, R. L., Erythrocytic and vascular factors influencing the microcirculatory behavior of blood in sickle cell anemia. Annls N. Y. Acad. Sci.565 (1989) 316–326.Google Scholar
  58. 58.
    Kaul, D. K., Fabry, M. E., Windisch, P., Baez, S., and Nagel, R. L., Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J. clin. Invest.72 (1983) 22–31.PubMedGoogle Scholar
  59. 59.
    Kaul, D. K., Nagel, R. L., and Baez, S., Pressure effects on the flow behavior of sickle (HbSS) red cells in isolated (ex-vivo) microvascular system. Microvasc. Res.26 (1983) 170–181.CrossRefPubMedGoogle Scholar
  60. 60.
    Kaul, D. K., Nagel, R. L., Chen, D., and Tsai H.-M., Sickle cell adhesion to the endothelium in flow conditions: the role of von Willebrand factor. Blood78 (1991) 369a.Google Scholar
  61. 61.
    Kaul, D. K., and Xue, H., Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood77 (1991) 1353–1361.PubMedGoogle Scholar
  62. 62.
    Klug, P. P., Kay, N., and Jensen, W. N., Endothelial cell and vascular damage in the sickle cell disorders. Blood Cells8 (1982) 175–181.PubMedGoogle Scholar
  63. 63.
    Klug, P. P., and Lessin, L. S., Microvascular blood flow of sickled erythrocytes. Blood Cells3 (1982) 263–272.Google Scholar
  64. 64.
    Lacelle, P. L., Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells3 (1977) 273–281.Google Scholar
  65. 65.
    Lipowsky, H. H., Sheikh, N. U., and Katz, D. M., Intravital microscopy of capillary hemodynamics in sickle cell disease. J. clin. Invest.80 (1987) 117–127.PubMedGoogle Scholar
  66. 66.
    Lipowsky, H. H., Usami, S., and Chien, S., Human SS red cell rheological behavior in the microcirculation of cremaster muscle. Blood Cells8 (1982) 113–126.PubMedGoogle Scholar
  67. 67.
    Lessin, L., Muenz, L., Makris, N., Noguchi, C., and Schechter, A., Intracellular Hb-S polymer fraction and HbSS disease severity. An analysis of the cooperative study of sickle cell disease database. 4th Int. Conf. on Thalassemia and the Hemoglobinopathies. Nice-Acropolis-France, November 6–8, 1991.Google Scholar
  68. 68.
    Levine, J. D., Harlan, J. M., Harker, L. A., Joseph, M. L., and Counts, R. B., Thrombin-mediated release of factor VII antigen from human umbilical vein endothelial cells in culture. Blood60 (1982) 531–534.PubMedGoogle Scholar
  69. 69.
    Mannucci, P. M., Aberg, M., Nilssen, I. M., and Robertson, B., Mechanism of plasminogen activator and factor VIII increase after vasoactive drug. Br. J. Haemat.30 (1975) 81–93.Google Scholar
  70. 70.
    Marsden, P. D., and Shah, K. K., Artificially induced edema in sickle cell anemia. J. trop. Med. Hyg.67 (1964) 31.PubMedGoogle Scholar
  71. 71.
    McEver, R. P., Beckstead, J. H., Moore, K. L., Marshall-Carlson, L., and Baiton, D. F., GMP-140, a platelet α-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weible-Palade bodies. J. clin. Invest.84 (1989) 92–99.PubMedGoogle Scholar
  72. 72.
    Miyoshi, K., Kaneto, Y., and Kawai, H., X-linked dominant control of the F cells in normal adult life: characterization of the Swiss type of hereditary persistence of fetal hemoglobin regulated dominantly by gene(s) on X chromosome. Blood72 (1988) 1854–1860.PubMedGoogle Scholar
  73. 73.
    Mohandas, N., Measurement of cellular deformability and membrane material properties of red cells by ektacytometry, in: Red Cell Membranes, pp. 299–320. Eds S. B. Shohet and N. Mohandas. Churchill Livingstone, New York 1988.Google Scholar
  74. 74.
    Mohandas, N., and Evans, E., Sickle erythrocyte adherence to vascular endothelium: morphological correlates and the requirement for divalent cations and collagen-binding plasma proteins. J. clin. Invest.76 (1985) 1605–1612.PubMedGoogle Scholar
  75. 75.
    Moore, K. L., Stultz, K. L., Smith, D. L., Cummings, R. C., Varki, A., and McEver, R. P., Identification of a ligand for GMP-140 (CD-62) on myeloid cells. Blood78 (1991) 108a.Google Scholar
  76. 76.
    Mozzarelli, A., Hofrichter, J., and Eaton, W. A., Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science237 (1987) 500–506.PubMedGoogle Scholar
  77. 77.
    Nagel, R. L., Bookchin, R. M., Johnson, J., Labie, D., Wajcman, H., Isaac-Sodeye, A. W., Honing, G. R., Schiliro, G., Crookston, J. H., and Matsutomo, K., The structural bases of the inhibitory effects of HbF and HbA2 on the polymerization of HbS. Proc. natl Acad. Sci. USA76 (1979) 670–672.PubMedGoogle Scholar
  78. 78.
    Nagel, R. L., and Fabry, M. E., The many pathophysiologies of sickle cell anemia. Am. J. Hemat.20 (1985) 195–199.PubMedGoogle Scholar
  79. 79.
    Nagel, R. L., Johnson, J., Bookchin, R. M., Garel, M. C., Rosa, J., Schiliro, G., Wajcman, H., Labie, D., Moo-Peen, W., and Castro, O., β chain contact sites in the hemoglobin S polymer. Nature283 (1980) 832–834.CrossRefPubMedGoogle Scholar
  80. 80.
    Nagel, R. L., and Ranney, H. M., Genetic epidemiology of structural mutations of the β-globin gene. Semin. Hemat.27 (1990) 342–359.PubMedGoogle Scholar
  81. 81.
    Nash, G. B., Johnson, C. S., and Meiselman, H. J., Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease. Blood67 (1986) 110–118.PubMedGoogle Scholar
  82. 82.
    Nicoll, P. A., and Webb, R. L., Vascular pattern and active vasomotion as determinants of flow through minute vessels. Angiology6 (1955) 291–310.PubMedGoogle Scholar
  83. 83.
    Noguchi, C. T., Rodgers, G. P., and Schechter, A. N., Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals. Prog. clin. biol. Res.240 (1987) 381–391.PubMedGoogle Scholar
  84. 84.
    Oner, C., Dimovaski, A. J., Altay, C., Gurgey, A., Gu, Y. C., Huisman, T. H. J., and Lanclos, K. D., Sequence variation in the 5′ hypersensitivity site-2 of the Locus Control Region of βs chromosomes are associated with different levels of fetal globin in hemoglobin S homozygotes. Blood79 (1992) 820–825.PubMedGoogle Scholar
  85. 85.
    Plat+, O. S., Thorington, B. D., Brambilla, D. J., Milner, P. F., Rosse, W. F., Vichinswky, E., and Kinney, T. R., Pain in sickle cell disease — Rates and risk factors. N. Engl. J. Med.325 (1991) 11.PubMedGoogle Scholar
  86. 86.
    Powars, D. R., Sickle cell anemia: βs-Gene-cluster haplotypes as prognostic indicators of vital organ failure. Semin. Hemat.28 (1991) 202–208.PubMedGoogle Scholar
  87. 87.
    Powars, D. R., Schroeder, W. A., Weiss, J. N., Chan, L. S., and Azen, S. P., Lack of influence of fetal hemoglobin levels or erythrocyte indices on the severity of sickle anemia. J. clin. Invest.65 (1980) 732–740.PubMedGoogle Scholar
  88. 88.
    Prentice, C. R. M., Forbes, C. D., and Smith, S. M., Rise of factor VIII after exercise and adrenaline infusion measured by immunological and biological techniques. Thromb. Res.1 (1972) 493–501.CrossRefGoogle Scholar
  89. 89.
    Ragusa, A., Lombardo, M., Beldjord, C., Ruberto, C., Lombardo, T., Elica, J., Nagel, R. L., and Krishnamoorthy, R., Genetic epidemiology of β-thalassemia in Sicily: Do sequences 5′ to theGγ gene and 5′ to the β gene interact to enhance HbF expression in β-thalassemia. Am. J. Hemat.40 (1992) 313–315.PubMedGoogle Scholar
  90. 90.
    Ribes, J. A., Francis, C. W., and Wagner, D. D., Fibrin induces release of von Willebrand factor from endothelial cells. J. clin. Invest.79 (1987) 117–124.PubMedGoogle Scholar
  91. 91.
    Rodgers, G. P., Schechter, A. N., Noguchi, C. T., Klein, H. G., Neinhuis, A. W., and Bonner, R. F., Periodic microcirculatory flow in patients with sickle-cell disease. N. Engl. J. Med.311 (1984) 1534–1538.PubMedGoogle Scholar
  92. 92.
    Saarinen, U. M., Chorba, T. L., Tattersall, P., Young, N. S., Anderson, L. J., Palmer, E., and Coccia, P. F., Human parvovirus B19-induced epidemic acute red cell aplasia in patients with hereditary hemolytic anemia. Blood67 (1987) 1411–1417.Google Scholar
  93. 93.
    Samuel, R. E., Salmon, E. D., and Josephs, R., Length distributions of hemoglobin S fibers. J. molec. Biol.211 (1990) 693–698.CrossRefPubMedGoogle Scholar
  94. 94.
    Schmidt-Schoenbein, H., Continuous viscous deformation of red blood cells in flow and their disturbance in sickle cell disease. Blood Cells8 (1982) 29–51.PubMedGoogle Scholar
  95. 95.
    Schmidt-Schoenbein, H., von Gosen, J., Heinich, L., Klose, H. J., and Volger, E., A counter-rotating ‘rheoscope chamber’ for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. Microvasc. Res.6 (1973) 366–378.CrossRefPubMedGoogle Scholar
  96. 96.
    Schroeder, W. A., Powars, D. R., and Kay, L. M., β-Cluster haplotypes α-gene status and hematological data from SS SC and S-β-thalassemia patients in southern California. Hemoglobin13 (1989) 325–353.PubMedGoogle Scholar
  97. 97.
    Schwartz, R. S., Rybicki, A. C., and Heath, R. H., Protein 4.1 in sickle erythrocytes: evidence for oxidative damage. J. biol. Chem.262 (1987) 15666–15672.PubMedGoogle Scholar
  98. 98.
    Self, F., McIntire, L. V., and Zanger, B., Rheological evaluation of hemoglobin S and hemoglobin C hemoglobinopathies. J. Lab. clin. Med.89 (1977) 488–497.PubMedGoogle Scholar
  99. 99.
    Serjeant, G. R., and Chalmers, R. M., Current concerns in haematology. Is the painful crisis of sickle cell disease a ‘steal’ syndrome? J. clin. Path.43 (1990) 789–791.PubMedGoogle Scholar
  100. 100.
    Smith, B. D., and Lacelle, P. L., Erythrocyte-endothelial adherence in sickle cell disorders. Blood68 (1985) 1050–1612.Google Scholar
  101. 101.
    Steinberg, M. H., Rosenstock, W., Coleman, M. B., Adams, J. G., Platica, O., Cedano, M., Rieder, R. F., Wilson, J. T., Milner, P., and West, S., The cooperative study of sickle cell disease; effects of thalassemia and microcytosis upon the hematological vaso-occlusive severity of sickle cell anemia. Blood63 (1984) 1353–1360.PubMedGoogle Scholar
  102. 102.
    Tsai, H. M., Sussman, I. I., Nagel, R. L., and Kaul, D. K., Desmopressin induces adhesion of normal human erythrocytes to the endothelial surface of a perfused microvascular preparation. Blood75 (1990) 261–265.PubMedGoogle Scholar
  103. 103.
    Tuan, D., Feingold, E., Newman, M., Weissman, S. M., and Forget, B. G., Different 3′ end points of deletions causing β thalassemia and hereditary persistence of fetal hemoglobin: implications for the control of γ-globin gene expression in man. Proc. natl Acad. Sci. USA80 (1983) 6937–6941.PubMedGoogle Scholar
  104. 104.
    Vargas, F. F., and Blackshear, G. L., Vascular resistance and transit time of sickle red blood cells. Blood Cells8 (1982) 139–141.PubMedGoogle Scholar
  105. 105.
    Wick, T. M., Moake, J. L., Udden, M. M., Eskin, S. G., Sears, D. A., and McIntire, L. V., Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J. clin. Invest.80 (1987) 905–910.PubMedGoogle Scholar
  106. 106.
    Wishner, B. C., Ward, K. B., Lattam, E. E., and Love, W. E., Crystal structure of sickle cell deoxy hemoglobin and 5 A resolution. J. molec. Biol.98 (1975) 179–194.PubMedGoogle Scholar
  107. 107.
    Zweifach, B. W., Perspectives in microcirculation, in: Microcirculation, vol. 1, pp. 1–19. Eds G. Kaley and B. M. Altura. University Parks Press, Baltimore, 1977.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1993

Authors and Affiliations

  • D. K. Kaul
    • 1
  • R. L. Nagel
    • 1
  1. 1.Division of Hematology, Albert Einstein College of MedicineYeshiva UniversityBronx(USA)

Personalised recommendations