Advertisement

Experientia

, Volume 48, Issue 5, pp 448–456 | Cite as

Comparative aspects of structure and action of molluscan neuropeptides

  • Y. Muneoka
  • M. Kobayashi
Multi-Author Review

Abstract

A number of neuropeptides were isolated from the ganglia and muscles of molluscs, and their actions were examined. Diverse neuropeptides, in addition to several classical neurotransmitters, were suggested to be involved in the regulation of the anterior byssus retractor muscle ofMytilus. A wide structural variety of members of theMytilus inhibitory peptide family was observed in each of the generaMytilus, Achatina andHelix. Gly-Trp-NH2, the C-terminal dipeptide fragment of the neuropeptide AGPWamide, showed a more potent action than the parent peptide in all of the muscles examined. Peptides related to some molluscan neuropeptides were found to be distributed interphyletically. Some neuropeptides containing ad-amino acid residue were found inAchatina andMytilus. These aspects of molluscan neuropeptides are thought not to be exceptional.

Key words

Neuropeptide Mollusca ABRM Mytilus Achatina Helix d-amino acid residue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Croll, R. P., Van Minnen, J., Kits, K. S., and Smit, A. B., APGW-amide: Molecular, histological and physiological examination of a novel neuropeptide involved with reproduction in the snail,Lymnaea stagnalis, in: Molluscan Neurobiology, pp. 248–254. Eds K. S. Kits, H. H. Boer and J. Joosse. North Holland Publishing Company, Amsterdam 1991.Google Scholar
  2. 2.
    Cropper, E. C., Tenenbaum, B., Kolks, M. A. G., Kupfermann, I., and Weiss, K. R., Myomodulin: a bioactive neuropeptide present in an identified cholinergic buccal motor neuron ofAplysia. Proc. natl Acad. Sci. USA84 (1987) 5483–5486.PubMedGoogle Scholar
  3. 3.
    D'Aniello, A., and Guiditta, A., Identification ofd-aspartic acid in the brain ofOctopus vulgaris Lam. J. Neurochem.29 (1977) 1053–1057.PubMedGoogle Scholar
  4. 4.
    D'Aniello, A., and Guiditta, A., Precence ofd-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J. Neurochem.31 (1978) 1107–1108.PubMedGoogle Scholar
  5. 5.
    Felbeck, H., Occurrence and metabolism ofd-aspartate in the gutless bivalvesSoleyma reidi. J. exp. Zool.234 (1985) 145–149.Google Scholar
  6. 6.
    Felbeck, H., and Wiley, S., Freed-amino acid in the tissues of marine bivalves. Biol. Bull.173 (1987) 252–259.Google Scholar
  7. 7.
    Fujimoto, K., Kubota, I., Yasuda-Kamatani, Y., Minakata, H., Nomoto, K., Yoshida, M., Harada, A., Muneoka, Y., and Kobayashi, M., Purification of achatin-I from the atria of the African giant snail,Achatina fulica, and its possible function. Biochem. biophys. Res. Commun.177 (1991) 847–853.PubMedGoogle Scholar
  8. 8.
    Fujisawa, Y., Ikeda, T., Nomoto, K., Yasuda-Kamatani, Y., Minakata, H., Kenny, P. T. M., Kubota, I., and Muneoka, Y., The FMRFamide-related decapeptide ofMytilus contains ad-amino acid residue. Comp. Biochem. Physiol. (1992) in press.Google Scholar
  9. 9.
    Fujisawa, Y., Kubota, I., Ikeda, T., Minakata, H., and Muneoka, Y., A variety ofMytilus inhibitory peptides in the ABRM ofMytilus edulis: isolation and characterization. Comp. Biochem. Physiol.100C (1991) 525–531.Google Scholar
  10. 10.
    Fujisawa, Y., Kubota, I., Kanda, T., Kuroki, Y., and Muneoka, Y., Neuropeptides isolated fromMytilus, edulis (Bivalvia) andFusinus ferrugineus (Prosobranchia), in. Comparative Aspects of Neuropeptide Function, pp. 97–114. Eds E. Florey and G. B. Stefano. Manchester University Press, Manchester 1991.Google Scholar
  11. 11.
    Furukawa, Y., and Kobayashi, M., Neural control of heart beat in the African giant snail,Achatina fulica Férussac. I. Identification of the heart regulatory neurones. J. exp. Biol.129 (1987) 295–307.Google Scholar
  12. 12.
    Hidaka, T., and Twarog, B. M., Neurotransmitter action on the membrane ofMytilus smooth muscle — I. Acetylcholine. Gen. Pharmacol.8 (1977) 83–86.Google Scholar
  13. 13.
    Hidaka, T., Yamaguchi, H., Twarog, B. M., and Muneoka, Y., Neurotransmitter action on the membrane ofMytilus smooth muscle — II. Dopamine. Gen. Pharmacol.8 (1977) 87–91.Google Scholar
  14. 14.
    Hirata, T., Kubota, I., Imada, M., Muneoka, Y., and Kobayashi, M., Effects of the catch-relaxing peptide on molluscan muscles. Comp. Biochem. Physiol.92C (1989) 283–288.Google Scholar
  15. 15.
    Hirata, T., Kubota, I., Iwasawa, N., Fujisawa, Y., Muneoka, Y., and Kobayashi, M., Effect ofMytilus inhibitory peptides on mechanical responses of various molluscan muscles. Comp. Biochem. Physiol.93C (1989) 381–388.Google Scholar
  16. 16.
    Hirata, T., Kubota, I., Iwasawa, N., Takabatake, I., Ikeda, T., and Muneoka, Y., Structures and actions ofMytilus inhibitory peptides. Biochem. biophys. Res. Commun.152 (1988) 1376–1382.PubMedGoogle Scholar
  17. 17.
    Hirata, T., Kubota, I., Takabatake, I., Kawahara, A., Shimamoto, N., and Muneoka, Y., Catch-relaxing peptide isolated fromMytilus pedal ganglia. Brain Res.422 (1987) 374–376.PubMedGoogle Scholar
  18. 18.
    Igwe, O. J., Felice, L. J., Seybold, V. S., and Larson, A. A., Optimization of high-performance liquid chromatography — radioimmunoassay protocols for the analyses of substance P and some of its metabolic fragments. J. Chromatogr.432 (1988) 113–126PubMedGoogle Scholar
  19. 19.
    Ikeda, T., Kiss, T., Hiripi, L., Fujisawa, Y., Kubota, I., and Muneoka, Y., MIP (Mytilus inhibitory peptide) analogues isolated from the ganglia of the pulmonate molluscHelix pomatia, in: Peptide Chemistry 1990, pp. 357–362. Ed. Y. Shimonishi. Protein Research Foundation, Osaka 1991.Google Scholar
  20. 20.
    Ikeda, T., Kiss, T., Hiripi, L. Kubota I., Yasuda-Kamatani, Y., Minakata, H., Kenny, P. T. M., Nomoto, K., and Muneoka, Y., The structural multiplicity ofMytilus inhibitory peptides isolated from pulmonate molluscs. J. Biol. hung. (1992) in press.Google Scholar
  21. 21.
    Ikeda, T., Kubota, I., and Muneoka, Y., Bioactive substances in nerve-cord extracts from an echiuroid,Urechis unicinctus — II. Peptidic substances. Comp. Biochem. Physiol. (1992) in press.Google Scholar
  22. 22.
    Ikeda, T., Yasuda-Kamatani, Y., Minakata, H., Kenny, P. T. M., Nomoto, K., and Muneoka, Y.,Mytilus-inhibitory peptide analogues isolated from the ganglia of a pulmonate mollusc,Achatina fulica. Comp. Biochem. Physiol. (1992) in press.Google Scholar
  23. 23.
    Kamatani, Y., Minakata, H., Kenny, P. T. M., Iwashita, T., Watanabe, K., Funase, K., Sun, X. P., Yongsiri, A., Kim, K. H., Novales-Li, P., Novales, E. T., Kanapi, C. G., Takeuchi, H., and Nomoto, K., Achatin-I, an endogenous neuroexcitatory tetrapeptide fromAchatina fulica Férussac containing ad-amino acid residue. Biochem. biophys. Res. Commun.160 (1989) 1015–1020.PubMedGoogle Scholar
  24. 24.
    Kitagawa, K., Ujita, K., Kiso, Y., Akita, T., Nakata, Y., Nakamoto, N., Segawa, T., and Yajima, H., Synthesis and activity of C-terminal heptapeptides of tachykinins and bombesin-like peptides. Chem. pharm. Bull. Tokyo27 (1979) 48–57.PubMedGoogle Scholar
  25. 25.
    Kobayashi, M., and Muneoka, Y., Structure and action of molluscan neuropeptides. Zool. Sci.7 (1990) 801–814.Google Scholar
  26. 26.
    Kreil, G., Processing of precursors, by dipeptidylaminopeptidases: a case of molecular ticketing. TIBS15 (1990) 23–26.PubMedGoogle Scholar
  27. 27.
    Kuroki, Y., Kanda, T., Kubota, I., Fujisawa, Y., Ikeda, T., Miura, A., Minamitake, Y., and Muneoka, Y., A molluscan neuropeptide related to the crustacean hormone RPCH. Biochem. biophys. Res. Commun.167 (1990) 273–279.PubMedGoogle Scholar
  28. 28.
    Kuroki, Y., Kanda, T., Kubota, I., Ikeda, T., Fujisawa, Y., Minakata, H., and Muneoka, Y., FMRF amide-related peptides isolated from the prosobranch molluscFusinus ferrugineus. J. Biol. hung. (1992) in press.Google Scholar
  29. 29.
    Liu, G. J., Santos, D. E., Takeuchi, H., Kamatani, Y., Minakata, H., Nomoto, K., Kubota, I., Ikeda, T., and Muneoka, Y., APGW-amide as an inhibitory neurotransmitter ofAchatina fulica, Férussac. Biochem. biophys. Res. Commun.177 (1991) 27–33.PubMedGoogle Scholar
  30. 30.
    Minakata, H., Kuroki, Y., Ikeda, T., Fujisawa, Y., Nomoto, K., Kubota, I., and Muneoka, Y., Effects of the neuropeptide APGW-amide and related compounds on molluscan muscles — GW-amide shows potent modulatory effects. Comp. Biochem. Physiol.100C (1991) 565–571.Google Scholar
  31. 31.
    Montecucchi, P. C., de Castiglione, R., Piani, S., Cozzini, L., and Erspamer, V., Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin ofPhyllomedusa sauvagei. Int. J. Pept. Protein Res.17 (1981) 275–283.PubMedGoogle Scholar
  32. 32.
    Mor, A., Delfour, A., and Nicolas, P., Identification of ad-alaninecontaining polypeptide precursor for the peptide opioid, dermorphin, J. biol. Chem.266 (1991) 6264–6270.PubMedGoogle Scholar
  33. 33.
    Muneoka, Y., Fujisawa, Y., Fujimoto, N., and Ikeda, T., The regulation and pharmacology of muscles inMytilus in: Neurobiology ofMytilus edulis, pp. 209–245. Ed. G. B. Stefano. Manchester University Press, Manchester 1990.Google Scholar
  34. 34.
    Muneoka, Y., Fujisawa, Y., Matsuura, M., and Ikeda, T., Neurotransmitters and neuromediators controlling the anterior byssus retractor muscle ofMytilus edulis. Comp. Biochem. Physiol.98C (1991) 105–114.Google Scholar
  35. 35.
    Muneoka, Y., and Kamura, M., The multiplicity of neurotransmitters and neurohormones controllingMytilus muscle. Comp. Biochem. Physiol.73C (1982) 146–156.Google Scholar
  36. 36.
    Muneoka, Y., Kuroki, Y., Minakata, H., Ikeda, T., Fujisawa, Y., Nomoto, K., and Kubota, I., Structure and pharmacological characterization of a molluscan neuropeptide related to the crustacean RPCH, in: Molluscan Neurobiology pp. 274–279. Eds K. S. Kits, H. H. Boer and J. Joosse. North Holland Publishing Company, Amsterdam 1991.Google Scholar
  37. 37.
    Muneoka, Y., and Matsuura, M., Effects of the molluscan neuropeptide FMRFamide and the related opioid peptide YGGFMRFamide onMytilus muscle. Comp. Biochem. Physiol.81C (1985) 61–70.Google Scholar
  38. 38.
    Muneoka, Y., and Saitoh, H., Pharmacology of FMRFamide inMytilus catch muscle. Comp. Biochem. Physiol.85C (1986) 207–214.Google Scholar
  39. 39.
    Muneoka, Y., Shiba, Y., Maetani, T., and Kanno, Y., Further study of the effect of mersalyl, an organic mercurial, on relaxing response of a molluscan smooth muscle to monoamines. J. toxicol. Sci.3 (1978) 117–126.PubMedGoogle Scholar
  40. 40.
    Muneoka, Y., and Twarog, B. M., Neuromuscular transmission and exitation-contraction coupling in molluscan muscle, in: The Mollusca, vol. 4, pp. 35–76. Eds A. S. M. Saleuddin and K. M. Wilbur. Academic Press, New York 1983.Google Scholar
  41. 41.
    Nakata, Y., Kusaka, Y., Yajima, J., and Segawa, T., Active uptake of substance P carboxy-terminal heptapeptode (5-11) into rat brain and rabbit spinal cord slices. J. Neurochem.37 (1981) 1529–1534.PubMedGoogle Scholar
  42. 42.
    Ohta, N., Kubota, I., Takao, T., Shimonishi, Y., Yasuda-Kamatani, Y., Minakata, H., Nomoto, K., Muneoka, Y., and Kobayashi, M., Fulicin, a novel neuropeptide containing ad-amino acid residue isolated from the ganglia ofAchatina fulica. Biochem. biophys. Res. Commun.178 (1991) 486–493.PubMedGoogle Scholar
  43. 43.
    Richter, K., Egger, R., Negri, L., Corsi, R., Severini, C., and Kreil, G., cDNAs encoding [d-Ala2] deltorphin precursors from skin ofPhyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides. Proc. natl Acad. Sci. USA87 (1990) 4836–4839.PubMedGoogle Scholar
  44. 44.
    Satchell, D. G., and Twarog, B. M., Identification of 5-hydroxytryptamine (serotonin) released from the anterior byssus retractor muscle ofMytilus californianus in response to nerve stimulation. Comp. Biochem. Physiol.59C (1978) 81–85.Google Scholar
  45. 45.
    Satchell, D. G., and Twarog, B. M., Identification and estimation of dopamine released from the anterior byssus retractor muscle ofMytilus californianus in response to nerve stimulation. Comp. Biochem. Physiol.64C (1979) 231–235.Google Scholar
  46. 46.
    Twarog, B. M., Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J. cell. comp. Physiol.44 (1954) 141–164.Google Scholar
  47. 47.
    Twarog, B. M., The pharmacology of a molluscan smooth muscle. Br. J. Pharmac.14 (1959) 404–407.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1992

Authors and Affiliations

  • Y. Muneoka
    • 1
  • M. Kobayashi
    • 1
  1. 1.Physiological Laboratory, Faculty of Integrated Arts and SciencesHiroshima UniversityHiroshima(Japan)

Personalised recommendations