, Volume 50, Issue 3, pp 295–306 | Cite as

Homologous recombination in fission yeast: Absence of crossover interference and synaptonemal complex

  • J. Kohli
  • J. Bähler
Multi-Author Reviews


The study of homologous recombination in the fission yeastSchizosaccharomyces pombe has recently been extended to the cytological analysis of meiotic prophase. Unlike in most eukaryotes no tripartite SC structure is detectable, but linear elements resembling axial cores of other eukaryotes are retained. They may be indispensable for meiotic recombination and proper chromosome segregation in meiosis I. In addition fission yeast shows interesting features of chromosome organization in vegetative and meiotic cells: Centromeres and telomeres cluster and associate with the spindle pole body. The special properties of fission yeast meiosis correlate with the absence of crossover interference in meiotic recombination. These findings are discussed. In addition homologous recombination in fission yeast is reviewed briefly.

Key words

Chromosome structure DNA repair fission yeast homologous recombination meiosis cytology Schizosaccharomyces pombe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amstutz, H., Munz, P., Heyer, W.-D., Leupold, U., and Kohli, J., Concerted evolution of tRNA genes: Intergenic conversion among three unlinked serine tRNA genes inSchizosaccharomyces pombe. Cell40 (1985) 879–886.PubMedGoogle Scholar
  2. 2.
    Ashton, M-L., and Moens, P. B., Light and electron microscopy of conjugation in the yeastSchizosaccharomyces octosporus. Can. J. Microbiol.28 (1982) 1059–1077.Google Scholar
  3. 3.
    Bähler, J., Schuchert, P., Grimm, C., and Kohli, J., Synchronized meiosis and recombination in fission yeast: Observations withpat1–114 diploid cells. Curr. Genet.19 (1991) 445–451.PubMedGoogle Scholar
  4. 4.
    Bähler, J., Wyler, T., Loidl, J., and Kohli, J., Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J. Cell Biol121 (1993) 241–256.PubMedGoogle Scholar
  5. 5.
    Bähler, J., Hagens, G., Holzinger, G., Scherthan, H., and Heyer, W.-D.,Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase. Chromosoma (1994) in press.Google Scholar
  6. 6.
    Baker, B. S., Carpenter, A. T. C., Esposito, M. S., Esposito, R. E., and Sandler, L., The genetic control of meiosis. A. Rev. Genet.10 (1976) 53–134.Google Scholar
  7. 7.
    Bodi, Z., Gysler-Junker, A., and Kohli, J., A quantitative assay to measure chromosome stability inSchizosaccharomyces pombe. Molec. gen. Genet.229 (1991) 77–80.PubMedGoogle Scholar
  8. 8.
    Carpenter, A. T. C., Thoughts on recombination nodules, meiotic recombination, and chiasmata, in: Genetic Recombination, pp. 529–548. Eds R. Kucherlapati and G. R. Smith. American Society for Microbiology, Washington D.C. 1988.Google Scholar
  9. 9.
    Clutterbuck, A. J., Sexual and parasexual genetics ofAspergillus species, in:Aspergillus: Biology and Industrial Applications, pp. 3–18. Eds J. W. Bennett and M. A. Klich. Butterworth-Heinemann, London 1992.Google Scholar
  10. 10.
    DeVeaux, L. C., Hoagland, N. A., and Smith, G. R., Seventeen complementation groups of mutations decreasing meiotic recombination inSchizosaccharomyces pombe. Genetics130 (1992) 251–262.PubMedGoogle Scholar
  11. 11.
    DeVeaux, L. C., and Smith, G. R. Region-specific activators of meiotic recombination inSchizosaccharomyces pombe. Genes and Dev.8 (1994) in press.Google Scholar
  12. 12.
    Dresser, M. E., and Giroux, C. N., Meiotic chromosome behavior in spread preparations of yeast. J. Cell Biol.106 (1988) 567–573.PubMedGoogle Scholar
  13. 13.
    Egel, R., Synaptonemal complex and crossing-over: structural support or interference? Heredity41 (1978) 233–237.PubMedGoogle Scholar
  14. 14.
    Egel, R., Mating-type genes, meiosis, and sporulation. In: Molecular Biology of Fission Yeast, pp. 31–73. Eds A. Nasim, P. Young, and B. F. Johnson. Academic Press, San Diego 1989.Google Scholar
  15. 15.
    Egel, R., and Egel-Mitani, M., Premeiotic DNA synthesis in fission yeast. Expl. Cell Res.88 (1974) 127–134.Google Scholar
  16. 16.
    Egel-Mitani, M., Olson L. W., and Egel, R., Meiosis inAspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas97 (1982) 179–187.PubMedGoogle Scholar
  17. 17.
    Eriksson, O. E., Svedskog, A., and Landvik, S., Molecular evidence for the evolutionary hiatus betweenSaccharomyces cerevisiae andSchizosaccharomyces pombe. Systema Ascomycetum11 (1993) 119–162.Google Scholar
  18. 18.
    Fan, J.-B., Grothues, D., and Smith, C. L., Alignment ofSfiI sites withNotI restriction map ofSchizosaccharomyces pombe genome. Nucl. Acids Res.19 (1991) 6289–6294.PubMedGoogle Scholar
  19. 19.
    Fleck, O., Heim, L., and Gutz, H., A mutatedswi4 gene causes duplications in the mating-type region ofSchizosaccharomyces pombe. Curr. Genet.18 (1990) 501–509.PubMedGoogle Scholar
  20. 20.
    Fleck, O., Michael, H., and Heim, L., Theswi4 + gene ofSchizosaccharomyces pombe encodes a homologue of mismatch repair enzymes. Nucl. Acids Res.20 (1992) 2271–2278.PubMedGoogle Scholar
  21. 21.
    Fogel, S., Mortimer, R., Lusnak, K., and Tavares, F., Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb. Symp. quant. Biol.43 (1979) 1325–1341.PubMedGoogle Scholar
  22. 22.
    Forsburg, S. L., and Nurse, P., Cell cycle regulation in the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe. A. Rev. Cell Biol.7 (1991) 227–256.Google Scholar
  23. 23.
    Foss, E., Lande, R., Stahl, F. W., and Steinberg, C. M., Chiasma interference as a function of genetic distance. Genetics133 (1993) 681–691.PubMedGoogle Scholar
  24. 24.
    Funabiki, H., Hagan, I., Uzawa, S., and Yanagida, M., Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell. Biol.121 (1993) 961–967.PubMedGoogle Scholar
  25. 25.
    Grossenbacher-Grunder, A.-M., Spontaneous mitotic recombination inSchizosaccharomyces pombe. Origin of the increased recombination rates in a UV-sensitive mutant. Curr. Genet.10 (1985) 95–101.Google Scholar
  26. 26.
    Grossenbacher-Grunder, A.-M., and Thuriaux, P., Spontaneous and UV-induced recombination in radiation-sensitive mutants ofSchizosaccharomyces pombe. Mutation Res.81 (1981) 37–48.PubMedGoogle Scholar
  27. 27.
    Gutz, H., Untersuchungen zur Feinstruktur der Genead7 undad6 vonSchizosaccharomyces pombe Lind. Habilitations-schrift (1963) Technische Universität Berlin.Google Scholar
  28. 28.
    Gutz, H., Heslot, H., Leupold, U., and Loprieno, N.,Schizosaccharomyces pombe, in: Handbook of Genetics, vol 1, pp. 395–446. Ed. R. C. King. Plenum, New York 1974.Google Scholar
  29. 29.
    Gygax, A., and Thuriaux, A revised chromosome map of the fission yeastSchizosaccharomyces pombe. Curr. Genet8 (1984) 85–92.Google Scholar
  30. 30.
    Gysler-Junker, A., Bodi, Z., and Kohli, J., Isolation and characterization ofSchizosaccharomyces pombe mutants affected in mitotic recombination. Genetics128 (1991) 495–504.PubMedGoogle Scholar
  31. 31.
    Haldane, J. B. S., The combination of linkage values, and the calculation of distances between the loci of linked factors. J. Genet.8 (1919) 299–309.Google Scholar
  32. 32.
    Hawley, S. R., Exchange and chromosomal segregation in eukaryotes, in: Genetic Recombination, pp. 497–527. Eds R. Kucherlapati and G. R. Smith. American Society for Microbiology, Washington D.C. 1988.Google Scholar
  33. 33.
    Hawley, R. S., and Arbel, T., Yeast genetics and the fall of the classical view of meiosis. Cell72 (1993) 301–303.PubMedGoogle Scholar
  34. 34.
    Herskowitz, I., Rine, J., and Strathern, J. N., Mating-type determination and mating-type interconversion inSaccharomyces cerevisiae, in: The Molecular and Cellular Biology of the YeastSaccharomyces: Gene Expression, pp. 583–656. Eds. E. W. Jones, J. R. Pringle, and J. R. Broach. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1992.Google Scholar
  35. 35.
    Heyer, W.-D., Munz, P., Amstutz, H., Aebi, R., Gysler, C., Schuchert, P., Szankasi, P., Leupold, U., Kohli, J., Gamulin, V., and Söll, D., Inactivation of nonsense suppressor transfer RNA genes inSchizosaccharomyces pombe. Intergenic conversion and hotspots of mutation. J. molec. Biol.188 (1986) 343–354.PubMedGoogle Scholar
  36. 36.
    Hirata, A., and Tanaka, K., Nuclear behavior during conjugation and meiosis in the fission yeastSchizosaccharomyces pombe. J. gen. appl. Microbiol.28 (1982) 263–274.Google Scholar
  37. 37.
    Hiraoka, Y., Dernburg, A. F., Parmelee, S. J., Rykowski, M. C., Agard, D. A., and Sedat, J. W., The onset of homologous chromosome pairing duringDrosophila melanogaster embryogenesis. J. Cell Biol.120 (1993) 591–600.PubMedGoogle Scholar
  38. 38.
    Hofer, H., Hollenstein, H., Janner, F., Minet, M., Thuriaux, P., and Leupold, U., The genetic fine-structure of nonsense suppressors inSchizosaccharomyces pombe. I.sup3 andsup9. Curr. Genet.1 (1979) 45–62.Google Scholar
  39. 39.
    Hoheisel, J. D., Maier, E., Mott, R., McCarthy, L., Griogoriev, A. V., Schalkwyk, L. C., Nizetic, D., Francis, F., and Lehrach, H., High resolution cosmid and P1 maps spanning the 14Mb genome of the fission yeastS. pombe. Cell73 (1993) 109–120.PubMedGoogle Scholar
  40. 40.
    Holliday, R., A mechanism for gene conversion in fungi. Genet. Res.5 (1964) 282–304.Google Scholar
  41. 41.
    Jones, G. H., Chiasmata, in: Meiosis, pp. 213–244. Ed. P. B. Moens. Academic Press, Orlando 1987.Google Scholar
  42. 42.
    Junker, A., Lehmann, E., and Munz, P., Genetic analysis of particular aspects of intergenic conversion inSchizosaccharomyces pombe. Curr. Genet.12 (1987) 119–125.Google Scholar
  43. 43.
    Kaback, D. B., Steensma, H. Y., and De Jonge, P., Enhanced meitoic recombination on the smallest chromosome ofSaccharomyces cerervisiae. Proc. natl Acad. Sci. USA86 (1989) 3694–3698.PubMedGoogle Scholar
  44. 44.
    Kaback, D. B., Guacci, V., Barber, D., and Mahon, J. W., Chromosome size-dependent control of meiotic recombination. Science256 (1992) 228–232.PubMedGoogle Scholar
  45. 45.
    King, J. S., and Mortimer, R. K., A polymerization model of chiasma interference and corresponding computer simulation. Genetics126 (1990) 1127–1138.PubMedGoogle Scholar
  46. 46.
    Klar, A. J. S., Molecular genetics of fission yeast cell type: mating type and mating-type interconversion, in: The Molecular and Cellular Biology of the YeastSaccharomyces: Gene Expression, pp. 745–777. Eds E. W. Jones, J. R. Pringle, and J. R. Broach. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1992.Google Scholar
  47. 47.
    Klar A. J. S., Development choices in mating-type interconversion in fission yeast. Trends Genet.8 (1992) 208–213.PubMedGoogle Scholar
  48. 48.
    Kleckner, N., and Weiner, B., Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic and premeiotic cells. Cold Spring Harb. Symp. quant. Biol.58 (1993) in press.Google Scholar
  49. 49.
    Kohli, J., Hottinger, H., Munz, P., Strauss, A., and Thuriaux, P., Genetic mapping inSchizosaccharomyces pombe by mitotic and meiotic analysis and induced haploidization. Genetics87 (1977) 471–489.Google Scholar
  50. 50.
    Kohli, J., Munz, P., Aebi, R., Amstutz, H., Gysler, C., Heyer, W.-D., Lehmann, E., Schuchert, P., Szankasi, P., Thuriaux, P., Leupold U., Bell, J., Gamulin, V., Hottinger, H., Pearson, D., and Söll, D., Interallelic and intergenic conversion in three serine tRNA genes ofSchizosaccharomyces pombe. Cold Spring Harb. Symp. quant. Biol.49 (1984) 31–40.PubMedGoogle Scholar
  51. 51.
    Kohli, J., Munz, P., and Söll, D., Informational suppression, transfer RNA, and intergenic conversion, in: Molecular Biology of Fission Yeast, pp. 1–30. Eds A. Nasim, P. Young, and B. F. Johnson. Academic Press, San Diego 1989.Google Scholar
  52. 52.
    Kramer, B., Kramer, W., Williamson, M. S., and Fogel, S., Heteroduplex DNA correction inSaccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Molec. cell. Biol.9 (1989) 4432–4440.PubMedGoogle Scholar
  53. 53.
    Kramer, W., Kramer, B., Williamson, M. S., and Fogel, S., Cloning and nucleotide sequence of DNA mismatch repair PMS1 fromSaccharomyces cerevisiae: Homology ofPMS1 to prokaryoticmultL andhexB. J. Bact.171 (1989) 5339–5346.PubMedGoogle Scholar
  54. 54.
    Lee, M., and Nurse, P., Complementation used to clone a human homologue of the fission yeast cell cycle control genecdc2. Nature327 (1987) 31–35.PubMedGoogle Scholar
  55. 55.
    Leupold, U., Die Vererbung von Homothallie und Heterothallie beiSchizosaccharomyces pombe. Compt. rend. Lab. Carlsberg, Sér. physiol.24 (1950) 381–480.Google Scholar
  56. 56.
    Leupold, U., Studies on recombination inSchizosaccharomyces pombe. Cold Spring Harb. Symp. quant. Biol.23 (1959) 161–170.Google Scholar
  57. 57.
    Leupold, U. The origin ofSchizosaccharomyces pombe genetics, in: The Early Days of Yeast Genetics, pp 125–128. Eds M. N. Hall and P. Linder. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1993.Google Scholar
  58. 58.
    Lin, Y., Larson, K. L., Dorer, R., and Smith, G. R., Meiotically inducedrec7 andrec8 genes ofSchizosaccharomyces pombe. Genetics132 (1992) 75–85.PubMedGoogle Scholar
  59. 59.
    Lin, Y., and Smith, G. R., Transient, meiosis-induced expression of therec6 andrec12 genes ofSchizosaccharomyces pombe. Genetics (1994) in press.Google Scholar
  60. 60.
    Loidl, J., The initiation of meiotic chromosome pairing: the cytological view. Genome33 (1990) 759–778.PubMedGoogle Scholar
  61. 61.
    Loidl, J., Nairz, K., and Klein, F., Meiotic chromosome pairing in a haploid yeast. Chromosoma100 (1991) 221–228.PubMedGoogle Scholar
  62. 62.
    Maier, E., Hoheisel, J. D., McCarthy, L., Mott, R., Grigoriev, A. V., Monaco, A. P., Larin, Z., and Lehrach, H., Complete coverage of theSchizosaccharomyces pombe genome in yeast artificial chromosomes. Nature Genetics1 (1992) 273–277.PubMedGoogle Scholar
  63. 63.
    McCready, S., Carr, A. M., and Lehmann, A. R., Repair of cyclobutane dimers and 6-4 photoproducts in the fission yeastSchizosaccharomyces pombe. Molec. Microbiol.10 (1993) 885–890.Google Scholar
  64. 64.
    Mather, K., The relation between chiasmata and crossing-over in diploid and triploidDrosophila melanogaster. J. Genet.27 (1933) 243–259.Google Scholar
  65. 65.
    Mautino, M. R., Haedo, S. D., and Rosa, A. L., Physical mapping of meiotic crossover events in a 200-kb region ofNeurospora crassa linkage group I. Genetics134 (1993) 1077–1083.PubMedGoogle Scholar
  66. 66.
    Minet, M., Grossenbacher-Grunder, A.-M., and Thuriaux, P., The origin of a centromere effect on mitotic recombination. A study in the fission yeastSchizosaccharomyces pombe. Curr. Genet.2 (1980) 53–60.Google Scholar
  67. 67.
    Miret, J. J., Milla, M. G., and Lahue, R. S., Characterization of a DNA mismatch-binding activity in yeast extracts. J. biol. Chem.268 (1993) 3507–3513.PubMedGoogle Scholar
  68. 68.
    Mizukami, T., Chang, W. I., Garkavtsev, I., Kaplan, N., Lombardi, D., Matsumoto, T., Niwa, O., Kounosu, A., Yanagida, M., Marr, T. G., and Beach, D., A 13 kb resolution cosmid map of the 14Mb fission yeast genome by nonrandom sequence-tagged site mapping. Cell73 (1993) 121–132.PubMedGoogle Scholar
  69. 69.
    Molnar, M., and Sipiczki, M., Polyploidy in the haplontic yeastSchizosaccharomyces pombe: construction and analysis of strains. Curr. Genet.24 (1993) 45–52.PubMedGoogle Scholar
  70. 69a.
    Munz, P., An analysis of interference in fission yeast. Genetics (1994) in press.Google Scholar
  71. 70.
    Munz, P., and Leupold, U., Gene conversion in nonsense suppressors ofSchizosaccharomyces pombe. I. The influence of the genetic background and of three mutant genes (rad2, mut 1 andmut2) on the frequency of postmeiotic segregation. Molec. gen. Genet.170 (1979) 145–148.Google Scholar
  72. 71.
    Munz, P., and Leupold, U., Heterologous recombination between redundant transfer RNA genes inSchizosaccharomyces pombe, in: Molecular Genetics of Yeast, pp. 264–275. Eds D. von Wettstein, J. Friis, M. Kielland-Brandt, and A. Stenderup. Munksgaard, Copenhagen 1981.Google Scholar
  73. 72.
    Munz, P., Dorsch-Häsler, K., and Leupold, U., The genetic fine-structure of nonsense suppressors inSchizosaccharomyces pombe. II.sup8 andsup10. Curr. Genet.7 (1983) 101–108.Google Scholar
  74. 73.
    Munz, P., Amstutz, H., Kohli, J., and Leupold, U., Recombination between dispersed serine tRNA genes inSchizosaccharomyces pombe. Nature300 (1982) 225–231.PubMedGoogle Scholar
  75. 74.
    Munz, P., Wolf, K., Kohli, J., and Leupold, U., Genetics overview, in: Molecular Biology of Fission Yeast, pp. 1–30. Eds A. Nasim, P. Young, and B. F. Johnson, Academic Press, San Diego 1989.Google Scholar
  76. 75.
    Muller, H. J., The mechanism of crossing-over. Am. Nat.50 (1916) 193–221, 284–305, 350–366, 421–434.Google Scholar
  77. 76.
    Nilsson, N.-O., Säll, T., and Bengtsson, B. O., Chiasma and recombination data in plants: are they compatible? Trends Genet.9 (1993) 344–348.PubMedGoogle Scholar
  78. 77.
    Niwa, O., and Yanagida, M., Triploid meiosis and aneuploidy inSchizosaccharomyces pombe: an unstable aneuploid disomic for chromosome III. Curr. Genet.9 (1985) 463–470.Google Scholar
  79. 78.
    Olson, L. W., Eden, U., Egel-Mitani, M., and Egel, R. A., Asynaptic meiosis in fission yeast? Hereditas89 (1978) 189–199.Google Scholar
  80. 79.
    Petes, T. D., and Hill, C. W., Recombination between repeated genes in microorganisms. A. Rev. Genet.22 (1988) 147–168.Google Scholar
  81. 80.
    Petes, T. D., Malone, R. E., and Symington, L. S., Recombination in yeast, in: The Molecular and Cellular Biology of the YeastSaccharomyces: Genome Dynamics, Protein Synthesis and Energetics, pp. 407–521. Eds J. R. Broach, J. R. Pringle, and E. W. Jones, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1991.Google Scholar
  82. 81.
    Ponticelli, A. S., and Smith, G. R., Meiotic recombination-deficient mutants ofSchizosaccharomyces pombe. Genetics123 (1989) 45–54.PubMedGoogle Scholar
  83. 82.
    Reenan, R. A. G., and Kolodner, R. D., Characterization of insertion mutations in theSaccharomyces cerevisiae MSH1 andMSH2 genes: Evidence for separate mitochondrial and nuclear functions. Genetics132 (1992) 975–985.PubMedGoogle Scholar
  84. 83.
    Robinow, C. F., and Hyams, J. S., General cytology of fission yeast, in: Molecular Biology of Fission Yeast, pp. 273–330. Eds A. Nasim, P. Young and B. F. Johnson. Academic Press, San Diego 1989.Google Scholar
  85. 84.
    Roeder, S., Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet.6 (1990) 385–389.PubMedGoogle Scholar
  86. 85.
    Säll, T. and Bengtsson, B. O., Apparent negative interference due to variation in recombination frequencies. Genetics122 (1989) 935–942.PubMedGoogle Scholar
  87. 86.
    Schär, P., Munz, P., and Kohli, J., Meiotic mismatch repair quantified on the basis of segregation patterns inSchizosaccharomyces pombe. Genetics133 (1993) 815–824.PubMedGoogle Scholar
  88. 87.
    Schär, P., and Kohli, J., Marker effects of G to C transversions on intragenic recombination and mismatch repair inSchizosaccharomyces pombe. Genetics133 (1993) 825–835.PubMedGoogle Scholar
  89. 88.
    Scherthan, H., Loidl, H., Schuster, T., and Schweizer, D., Meiotic chromosome condensation and pairing inS. cerevisiae studied by chromosome painting. Chromosoma101 (1992) 590–595.PubMedGoogle Scholar
  90. 89.
    Schmidt, H., Kapitza, P., and Gutz, H., Switching genes inSchizosaccharomyces pombe: their influence on cell viability and recombination. Curr. Genet.11 (1987) 303–308.Google Scholar
  91. 90.
    Schuchert, P., and Kohli, J., Theade6-M26 mutation ofSchizosacchqromyces pombe increases the frequency of crossing over. Genetics119 (1988) 507–515.Google Scholar
  92. 91.
    Sheldrick, S., and Carr, A. M., Feedback controls and G2 checkpoints: fission yeast as a model system. BioEssays15 (1993) 775–782.PubMedGoogle Scholar
  93. 92.
    Sipiczki, M., Grossenbacher, A.-M., and Bodi, Z., Recombination and mating-type switching in a ligase-defective mutant ofSchizosaccharomyces pombe. Molec. gen. Genet.220 (1990) 307–313.Google Scholar
  94. 93.
    Snow, R., Maximum likelihood estimation of linkage and interference from tetrad data. Genetics92 (1979) 231–245.Google Scholar
  95. 94.
    Stickland, W. N., Analysis of interference inAspergillus nidulans. Proc. R. Soc., B149 (1958) 82–101.Google Scholar
  96. 95.
    Subramani, S., Radiations resistance inSchizosaccharomyces pombe. Molec. Microb.5 (1991) 2311–2314.Google Scholar
  97. 96.
    Symington, L. S., and Petes, T. D., Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Molec. cell. Biol.8 (1988) 595–604.PubMedGoogle Scholar
  98. 97.
    Symington, L. S., Brown, A., Oliver, S. G., Greenwell, P., and Petes, T. D., Genetic analysis of a meiotic recombination hotspot on chromosome III ofSaccharomyces cerevisiae. Genetics128 (1991) 717–727.PubMedGoogle Scholar
  99. 98.
    Szankasi, P., Gysler, C., Zehntner, U., Leupold, U., Kohli, J., and Munz, P., Mitotic recombination between dispersed but related tRNA gene ofSchizosaccharomyces pombe generates a reciprocal translocation. Molec. gen. Genet202 (1986) 394–402.Google Scholar
  100. 99.
    Szankasi, P., and Smith, G., A DNA exonuclease induced during meiosis ofSchizosaccharomyces pombe. J. biol. Chem.267 (1992) 3014–3023.PubMedGoogle Scholar
  101. 100.
    Takahashi, K., Murakami, S., Chikashige, Y., Funabiki, H., Niwa, O., and Yanagida, M., A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Molec. Biol. Cell3 (1992) 819–835.PubMedGoogle Scholar
  102. 101.
    Thuriaux, P., Minet, M., Munz, P., Ahmad, A., Zbären, D., and Leupold, U., Gene conversion in nonsense suppressors ofSchizosaccharomyces pombe. II. Specific marker effects. Curr. Gent.1 (1980) 89–95.Google Scholar
  103. 102.
    Thuriaux, P., Direct selection of mutants influencing gene conversion in the yeastSchizosaccharomyces pombe. Molec. gen. Genet.199 (1985) 365–371.PubMedGoogle Scholar
  104. 103.
    Uzawa, S., and Yanagida, M., Visualization of centromeric and nucleolar DNA in fission yeast by fluroescencein situ hybridization. J. Cell Sci101 (1992) 267–275.PubMedGoogle Scholar
  105. 104.
    Wainwright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K., Monophyletic origins of the metazoa: an evolutionary link with fungi. Science260 (1993) 340–342.PubMedGoogle Scholar
  106. 105.
    Wu, T. C., and Lichten, M., Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science (1994) in press.Google Scholar
  107. 106.
    Zenvirth, D., Arbel, T., Sherman, A., Goldway, M., Klein, S., and Simchen, G., Multiple sites for double-strand breaks in whole meiotic chromosomes ofSaccharomyces cerevisiae. EMBO J.11 (1992) 3441–3447.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • J. Kohli
    • 1
  • J. Bähler
    • 1
  1. 1.Institute of General MicrobiologyUniversity of BernBern(Switzerland)

Personalised recommendations