Skip to main content

Advertisement

Log in

Characterization and relative abundance of maxi-chloride channels in Epstein-Barr virus (EBV) producer: B95-8 cells

  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Several Epstein-Barr virus (EBV)-transformed cell lines were used to investigate the pathogenesis of lymphoproliferative diseases and nasopharyngeal carcinoma. The studies focus on the events occurring inside the membrane. On only one occasion, the cell membrane of EBV-transformed B lymphocytes from a cystic fibrosis patient was found to express defective Cl channels (CFTR; Cystic Fibrosis Transmembrane conductance Regulator), as in the airway epithelial cell. No other type of channel in EBV-transformed cells has so far been investigated. In this study, the cell membrane of the B95-8 cell was examined by the patch-clamp technique and compared to the non-EBV-infected BJAB cell. The high conductance (≈300 pS) maxi-chloride (Cl) channel activity was the most frequently observed event in inside-out configurations. Under similar experimental conditions, we have found a significantly higher probability of detecting maxi-Cl channel activity on the cell membrane of B95-8 cells (69%) than on BJAB cells (27%), or as previously reported on resting murine B lymphocytes (38%) or intact human T lymphocytes (37%). The relative abundance of the maxi-Cl channel on B95-8 cells may be linked to EBV infection and/or secretory ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Old, L. J., Boyse, E. A., Oettgen, H. F., de Harven, E., Geering, G., Williamson, B., and Clifford, P., Proc. natl. Acad. Sci. USA56 (1966) 1699.

    Google Scholar 

  2. Tu, S. M., in: Proceedings of Eighth International Congress of Oto-Rhino-Laryngology, vol. 113, p. 184. Excerpta Medica Foundation, Amsterdam, International Congress Series 1965.

  3. Miller, G., and Lipman, M., Proc. natl Acad. Sci. USA70 (1973) 190.

    PubMed  Google Scholar 

  4. Miller, G., Shope, T., Coope, D., Waters, L., Pagano, J., Bornkamm, G. W., and Henle, W., J. expl Med.145 (1977) 948.

    Article  Google Scholar 

  5. Birkenbach, M., Josefson, K., Yalamanchili, R., Lenoir, G., and Kieff, E., J. Virol.67 (1993) 2209.

    PubMed  Google Scholar 

  6. Wang, D., Liebowitz, D., and Kieff, E., Cell43 (1985) 831.

    Article  PubMed  Google Scholar 

  7. Sugdan, B., Cell57 (1989) 5.

    Article  PubMed  Google Scholar 

  8. Bernt, L. H., Butler, J. L., Woods Jr., W. T., and Bubien, J. K., J. Immun.145 (1990) 2381.

    PubMed  Google Scholar 

  9. Chen, J. H., Schulman, H., and Gardner, P., Science243 (1989) 57.

    Google Scholar 

  10. Wang, C., Takeuchi, K., Pinto, L. H., and Lamb, R. A., J. Virol.67 (1993) 5585.

    PubMed  Google Scholar 

  11. Pinto, L. H., Holsinger, L. J., and Lamb, R. A., Cell69 (1992) 517.

    Article  PubMed  Google Scholar 

  12. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. S., Pflügers Arch.391 (1981) 85.

    Article  Google Scholar 

  13. Premack, B. A., and Gardner, P., J. clin. Immun.11 (1991) 225.

    Article  PubMed  Google Scholar 

  14. Gallin, E. K., Physiol. Rev.71 (1991) 775.

    PubMed  Google Scholar 

  15. Hwang, T. C., Lu, L., Zeitlin, P. L., Gruenert, D. C., Huganir, R., and Guggino, W. B., Science244 (1989) 1351.

    PubMed  Google Scholar 

  16. Bosma, M. M., J. Physiol., Lond.410 (1989) 67.

    Google Scholar 

  17. Schlichter, L. C., Grygorczyk, R., Pahapill, P. A., and Grygorczyk, C., Pflügers Arch.416 (1990) 413.

    Article  Google Scholar 

  18. Pahapill, P. A., and Schlichter, L. C., J. Memb. Biol.125 (1992) 171.

    Google Scholar 

  19. McCann, F. V., McCarthy, D. C., and Noelle, R. J., J. Memb. Biol.114 (1990) 175.

    Article  Google Scholar 

  20. Woll, K. H., Leibowitz, M. D., Neumcke, B., and Hille, B., Pflügers Arch.410 (1987) 632.

    Article  Google Scholar 

  21. Soejima, M., and Kokubun, S., Pflügers Arch.411 (1988) 304.

    Google Scholar 

  22. Hayslett, J. P., Gögelein, H., Kunzelmann, K., and Greger, R., Pflügers Arch.410 (1987) 487.

    Article  Google Scholar 

  23. Krouse, M. E., Schneider, G. T., and Gage, P. W., Nature, Lond.319 (1986) 58.

    Google Scholar 

  24. Bettendorff, L., Kolb, H.-A., and Schoffeniels, E., J. Memb. Biol.136 (1993) 281.

    Google Scholar 

  25. Lewis, R. S., Ross, P. E., and Cahalan, M. D., J. gen. Physiol.101 (1993) 801.

    Article  PubMed  Google Scholar 

  26. Hals, G. D., Stein, P. G., and Palade, P. T., J. gen. Physiol.93 (1989) 385.

    Article  PubMed  Google Scholar 

  27. Gray, P. T. A., Bevan, S., and Ritchie, J. M., Proc. R. Soc. Ser. B221 (1984) 395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, T.H., Tsai, M.C., Lee, S.Y. et al. Characterization and relative abundance of maxi-chloride channels in Epstein-Barr virus (EBV) producer: B95-8 cells. Experientia 52, 818–826 (1996). https://doi.org/10.1007/BF01923996

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923996

Key words

Navigation