Skip to main content
Log in

Tissue protection against oxidative stress

  • Published:
Experientia Aims and scope Submit manuscript

Abstract

We used an enhanced luminescence technique to study the response of rat tissues, such as liver, heart, muscle and blood, to oxidative stress and to determine their antioxidant capacity. As previously found for liver homogenate, the intensity of light emission (E) of tissue homogenates and blood samples, stressed with sodium perborate, is dependent on concentration, and the dose-response curves can be described by the equation E=a·C/exp(b·C). Theb value depends on the antioxidant defence capability of the tissues. In fact, it increases when homogenates are supplemented with an antioxidant, and is correlated with tissue antioxidant capacity, evaluated by two previously set up methods both using the same luminescence technique. Our results indicate that the order of antioxidant capacity of the tissues is liver>blood>heart>muscle. Thea value depends on the systems catalysing the production of radical species. In fact, it is related to the tissue level of hemoproteins, which are known to act as catalysts in radical production from hydroperoxides. The equation proposed to describe the dose-response relation is simple to handle and permits an immediate connection with the two characteristics of the systems analysed which determine their response to the pro-oxidant treatment. However, the equation which best describes the above relation for all the tissues is the following: E=α·C/exp(β·Cδ). The parameter δ assumes values smaller than 1, which seem to depend on relative amounts of tissue hemoproteins and antioxidants. The extension of the analysis to mitochondria shows that they respond to oxidative stress in a way analogous to the tissues, and that the adherence of the dose-response curve to the course predicted from the equation E=a·C/exp(b·C) is again dependent on hemoprotein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Meo, S., Venditti, P., Piro, M. C., and De Leo, T., Arch. Physiol. Biochem.103 (1995) 187.

    PubMed  Google Scholar 

  2. Venditti, P., Di Meo, S., de Martino Rosaroll, P., and De Leo, T., Arch. Physiol. Biochem.103 (1995) 484.

    PubMed  Google Scholar 

  3. Tappel, A. L., Arch. Biochem. Biophys.44 (1955) 368.

    Google Scholar 

  4. Desai, I. D., and Tappel, A. L., Lipid Res.4 (1963) 204.

    Google Scholar 

  5. Cadenas, E., Boveris, A., and Chance, B., Biochem. J.187 (1980) 131.

    PubMed  Google Scholar 

  6. Sadrzadeh, S. M. H., Graf, E., Panter, S. S., Hallaway, P. E., and Eaton, J. W., J. biol. Chem.259 (1984) 14354.

    PubMed  Google Scholar 

  7. Banks, A., Eddie, E., and Smith, J. G. M., Nature (Lond.)190 (1961) 908.

    Google Scholar 

  8. Gutteridge, J. M. C., Richmond R., and Halliwell, B., Biochem. J.184 (1979) 469.

    PubMed  Google Scholar 

  9. Nishiki, K., Erecinska, M., and Wilson, D. F., Am. J. Physiol.235 (1978) C212.

    PubMed  Google Scholar 

  10. Winder, W. W., and Holloszy O., Am. J. Physiol.232 (1977) C180.

    PubMed  Google Scholar 

  11. Azzone, G. V., Colonna, R., and Ziche, B., Methods Enzymol.55 (1979) 46.

    PubMed  Google Scholar 

  12. Katyare, S. S., Joshi, M. V., Fatterpaker, P., and Sreenivasan, A., Arch. Biochem. Biophys.182 (1977) 155.

    Article  PubMed  Google Scholar 

  13. Di Meo, S., de Martino Rosaroll, P., and De Leo, T., Cell. Physiol. Biochem.2 (1992) 283.

    Google Scholar 

  14. Gornall, A. G., Bardawill, C. J., and David, M. M., J. biol. Chem.177 (1949) 751.

    Google Scholar 

  15. Aulie, A., and Grav, H. J., Comp. Biochem. Physiol.62A (1979) 335.

    Article  Google Scholar 

  16. Barré, H., Bailly, L., and Rouanet, J. L., Comp. Biochem. Physiol.88B (1987) 519.

    Google Scholar 

  17. Estabrooks, R. W., and Holowinsky, A., J. Biophys. Biochem. Cytol.9 (1961) 19.

    PubMed  Google Scholar 

  18. Daniels, F., Williams, J. W., Bender, P., Alberty, R. A., and Cornwell, C. D., Experimental Physical Chemistry. McGraw-Hill, New-York 1962.

    Google Scholar 

  19. de Martino Rosaroll, P., Di Maio, V., Valente, M., Di Meo, S., and De Leo, T., J. Endocr. Invest.11 (1988) 559.

    PubMed  Google Scholar 

  20. Reith, A., Bridiczka, D., Nolte, J., and Staudte, H. W., Expl Cell Res.77 (1973) 155.

    Google Scholar 

  21. Halliwell, B., and Gutteridge, J. M. C., Arch. Biochem. Biophys.280 (1990) 1.

    Article  PubMed  Google Scholar 

  22. Lew, H., Pyke, S., and Quintanilha, A., FEBS Lett.185 (1985) 262.

    Article  PubMed  Google Scholar 

  23. Ji, L. L., and Fu, R., J. appl. Physiol.72 (2) (1992) 549.

    PubMed  Google Scholar 

  24. Lang, J. K., Gohil, K., Packer, L., and Burk, R. F., J. appl. Physiol.63 (6) (1987) 2532.

    PubMed  Google Scholar 

  25. Gohil, K., Packer, L., de Lumen, B., Brooks, G. A., and Terblanche S. E., J. appl. Physiol.60 (6) (1986) 1986.

    PubMed  Google Scholar 

  26. Ji, L. L., Med. Sci. Sports Exerc.25 (1993) 225.

    PubMed  Google Scholar 

  27. Chance, B., Sies, H., and Boveris, A., Physiol. Rev.59 (1979) 527.

    PubMed  Google Scholar 

  28. Bartoli, G. M., Galeotti, T., and Azzi, A., Biochem. biophys. Acta497 (1977) 622.

    PubMed  Google Scholar 

  29. Boveris, A., Cadenas, E., and Stoppani, A. O. M., Biochem. J.156 (1976) 435.

    PubMed  Google Scholar 

  30. Turrens, J. F., and Boveris, A., Biochem. J.191 (1980) 421.

    PubMed  Google Scholar 

  31. Turrens, J. F., Freeman, B. A., and Crapo, J. D., Arch. Biochem. Biophys.217 (1982) 411.

    Article  PubMed  Google Scholar 

  32. Sekhar, B. S., Kurup, C. K. R., and Ramasarma, T., J. bioenerg. Biomemb.19 (1987) 397.

    Article  Google Scholar 

  33. Sohal, R. S., Svensson, I., Sohal, B. H., and Brunk, U. T., Mech. ageing Dev.49 (1989) 129.

    Article  PubMed  Google Scholar 

  34. Sohal, R. S., Svensson, I., and Brunk, U. T., Mech. ageing Dev.53 (1990) 209.

    Article  PubMed  Google Scholar 

  35. Davies, K. J. A., Quintanilha, A. T., Brooks, G. A., and Packer, L., Biochem. Biophys. Res. Commun.107 (1982) 1198.

    Article  PubMed  Google Scholar 

  36. Harman, D., Proc. natl Acad. Sci. USA78 (1981) 7124.

    PubMed  Google Scholar 

  37. Yu, B. P., Physiol. Rev.74 (1994) 139.

    PubMed  Google Scholar 

  38. Rush, J. D., and Koppenol, W. H., J. biol. Chem.261 (1986) 6730.

    PubMed  Google Scholar 

  39. Halliwell, B., and Gutteridge, J. M. C., Methods Enzymol.186 (1990) 1.

    Google Scholar 

  40. Gutteridge, J. M. C., Biochem. J.243 (1987) 709.

    PubMed  Google Scholar 

  41. Stadtman, E. R., A. Rev. Biochem.62 (1993) 797.

    Article  Google Scholar 

  42. Halliwell, B., and Gutteridge, J. M. C., Biochem. J.219 (1984) 1.

    PubMed  Google Scholar 

  43. Stadtman, E. R., Trends Biochem. Sci. (TIBS)11 (1986) 11.

    Article  Google Scholar 

  44. Rivett, A. J., in: Current Topics in Cellular Regulation, vol. 38, p. 291. Eds B. L. Horecker and E. R. Stadtman. Academic Press, Orlando 1986.

    Google Scholar 

  45. Levine, R. L., J. biol. Chem.258 (1983) 11828.

    PubMed  Google Scholar 

  46. Gutteridge, J. M. C., FEBS Lett.20 (1986) 291.

    Article  Google Scholar 

  47. Puppo, A., and Halliwell, B., Free Radic. Res. Commun.4 (1988) 415.

    PubMed  Google Scholar 

  48. Pacifici, R. E., and Davis, K. J. A., Methods Enzymol.186 (1990) 485.

    PubMed  Google Scholar 

  49. Shigenaga, M. K., Park, J.-W., Cundy, K. C., Gimeno, C. J., and Ames, B. N., Methods Enzymol.186 (1990) 521.

    PubMed  Google Scholar 

  50. Dillard, C. J., Hu, M.-L., and Tappel, A. L., Free Radic. Biol. Med.10 (1991) 51.

    Article  PubMed  Google Scholar 

  51. Chen, H., Tappel, A. L., and Boyle, R. C., Free Radic. Biol. Med.14 (1993) 509.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Meo, S., Venditti, P. & De Leo, T. Tissue protection against oxidative stress. Experientia 52, 786–794 (1996). https://doi.org/10.1007/BF01923990

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923990

Key words

Navigation