, Volume 49, Issue 8, pp 648–653 | Cite as

Structures and molecules involved in generation and regulation of biological rhythms in vertebrates and invertebrates

  • S. Binkley
Multi-Author Reviews Melatonin and the Light-Dark Zeitgeber in Vertebrates, Invertebrates and Unicellular Organisms


Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.

Key words

Melatonin rhythm circadian pineal eye light suprachiasmatic nucleus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, R., Circadian rhythms in adrenal organ cultures. Gegenbaurs morph. Jb. Leipzig117 (1971) 89–98.Google Scholar
  2. 2.
    Bandurski, R. S., and Nonhebel, H. M., Chapter 1: Auxins, in: Advanced Plant Physiology. Ed. M. B. Wilkins. Pitman, Marshfield 1984.Google Scholar
  3. 3.
    Binkley, S., Enzyme clock explains circadian phenomena, in: Advances in Pineal Research 3, pp. 107–112. Eds R. Reiter and S. F. Pant. John Libby & Co. Ltd., New York 1989.Google Scholar
  4. 4.
    Binkley, S., Functions of the pineal gland, in: Avian Endocrinology, pp. 53–74. Ed. A. Epple. Academic Press, New York 1980.Google Scholar
  5. 5.
    Binkley, S., The pineal: Endocrine and Nonendocrine Function, p. 136. Prentice Hall, Englewood Cliffs, NJ 1988.Google Scholar
  6. 6.
    Binkley, S., and Geller, E., Pineal N-acetyltransferase in chickens: Rhythm persists in constant darkness. J. comp. Physiol.99 (1975) 67–70.Google Scholar
  7. 7.
    Binkley, S., Hryshchyshyn, M., and Reilly, K., N-acetyltransferase activity responds to environmental lighting in the eye as well as in the pineal gland. Nature281 (1979) 479–481.PubMedGoogle Scholar
  8. 8.
    Binkley, S., Kluth, E., and Menaker, M., Pineal function in sparrows: circadian rhythm and body temperature. Science174 (1971) 311–314.PubMedGoogle Scholar
  9. 9.
    Binkley, S., MacBride, S., Klein, D., and Ralph, C. L., Regulation of pineal rhythms in chickens: Refractory period and nonvisual light perception. Endocrinology96 (1975) 848–853.PubMedGoogle Scholar
  10. 10.
    Binkley, S., Mosher, K., and White, B. N-acetyltransferase in chick pineal: Maps of light and dark sensitivity. J. Comp. Physiol. B159 (1989) 37–42.PubMedGoogle Scholar
  11. 11.
    Binkley, S., Riebman, J., and Reilly, K., The pineal gland: A biological clockin vitro. Science202 (1978) 1198–1201.PubMedGoogle Scholar
  12. 12.
    Binkley, S., Riebman, J., and Reilly, K., Timekeeping by the pineal gland. Science197 (1977) 1181–1183.PubMedGoogle Scholar
  13. 13.
    Block, G., and Wallace, S., Localization of a circadian pacemaker in the eye of a mollusc,Bulla. Science217 (1982) 155–157.Google Scholar
  14. 14.
    Brabant, G., Prank, J. F., Ranft, U., Schuermeyer, Th., Wagner, T. O. F., Hauser, H., Kummer, B., Feisterner, H., Hesch, R. D., and von zur Muhlen, A., Physiological regulation of circadian and pulsatile thryotropin secretion in normal man and woman. J. clin. Endocr. Metab.70 (1990) 403–409.PubMedGoogle Scholar
  15. 15.
    Breuer, H., Kaulhausen, H., Muhlbauer, W., Fritzsche, G., and Vetter, H., Circadian rhythm of the renin-angiotensin-aldosterone system, in: Chronobiological Aspects of Endocrinology Symp. Med, pp. 101–109. F. K. Schattauer, Stuttgart 1974.Google Scholar
  16. 16.
    Colepicolo, P., Camarero, V. C. P. C., and Hastings, J. W., A circadian rhythm in the activity of superoxide dismutase in the photosynthetic algaGonyaulax polyedra. Chronobiol. Int.9 (1992) 266–268.PubMedGoogle Scholar
  17. 17.
    Corrent, G., McAdoo, D., and Eskin, A., Serotonin shifts the phase of the circadian rhythm from theAplysia eye. Science202 (1978) 977–979.PubMedGoogle Scholar
  18. 18.
    Edmunds, L. N., Cell Cycle Clocks. Marcel Dekker, Inc., New York 1984.Google Scholar
  19. 19.
    Fernstrom, J. D., The influence of circadian variations in plasma amino acid concentrations on monoamine synthesis in the brain, in: Endocrine Rhythms, p. 95. Ed. D. T. Krieger. Raven Press, New York 1979.Google Scholar
  20. 20.
    Frantz, A. G., Rhythms in prolactin secretion, in: Endocrine Rhythms, p. 177. Ed. D. T. Krieger. Raven Press, New York 1979.Google Scholar
  21. 21.
    Gaston, S., and Menaker, M., Pineal function: The biological clock in the sparrow? Science160 (1968) 1125–1127.PubMedGoogle Scholar
  22. 22.
    Hiroshige, T., and Wada, S., Modulation of CRF activity in the rat hypothalamus, in: Chronobiological Aspects of Endocrinology, pp. 51–63. Eds J. Aschoff, F. Ceresa, and F. Halberg. F. K. Schattauer Verlag, Stuttgart and New York 1974.Google Scholar
  23. 23.
    Judd, H. L., Biorhythms of gonadotropins and testicular hormone secretion, in: Endocrine Rhythms, p. 305. Ed. D. T. Krieger. Raven Press, New York 1979.Google Scholar
  24. 24.
    Klein, D., and Weller, J., Indole metabolism in the pineal gland A circadian rhythm in N-acetyltransferase. Science169 (1970) 1093–1095.PubMedGoogle Scholar
  25. 25.
    Klein, D., and Weller, J., Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science177 (1972) 532–533.PubMedGoogle Scholar
  26. 26.
    Konig, A., and Meyer, A., The effect of continuous illumination on the circadian rhythm of the antidiuretic activity of the rat pineal. J. interdiscipl. Cycle Res.2 (1971) 255–262.Google Scholar
  27. 27.
    Krieger, D., Allen, W., Rizzo, F., Krieger, H. P., Characterization of the normal pattern of plasma corticosteroid levels. J. clin. Endocr. Metab.32 (1971) 266–284.PubMedGoogle Scholar
  28. 28.
    Logue, F. C., Fraser, W. D., Reilly, St. J., and Besastall, G. H., The circadian rhythm of intact parathyroid hormone (1–84) and nephrogenous cyclic adenosine monophosphate in normal men. J. Endocr.122 (1989) R1-R3; 1989.PubMedGoogle Scholar
  29. 29.
    Markowitz, M. E., Arnaud, S., Rosen, J. F., Thorpy, M., and Saximinarayan, S., Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations. J. clin. Endocr. Metab.67 (1988) 1068–1073.PubMedGoogle Scholar
  30. 30.
    Markowitz, M. E., Dimartino-Nardi, J., Gasparini, F., Fishman, K., Rosen, J., and Saenger, P., Effects of growth hormone therapy on circadian osteocalcin rhythms in idiopathic short stature. J. clin. Endocr. Metab.69 (1989) 420–425.PubMedGoogle Scholar
  31. 31.
    Menaker, M., Light perception by extra-retinal receptors in the brain of the sparrow. Proceedings, 76th Annual convention, American Psychological Association (1968) 299–300.Google Scholar
  32. 32.
    Menaker, M., and Underwood, H., Extraretinal photoreception in birds. Photochem. and Photobiol.23 (1976) 299–306.Google Scholar
  33. 33.
    Menaker, M., and Wisner, S., Temperature-compensated circadian clock in the pineal ofAnolis. Proc. natl Acad. Sci. USA80 (1983) 6119–6121.PubMedGoogle Scholar
  34. 34.
    Moore, R., and Klein, D., Visual pathways and central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase. Brain Res.71 (1974) 17–33.PubMedGoogle Scholar
  35. 35.
    Pierpaoli, W., and Maestroni, G. J. M., Melatonin: A principal neuroimmunoregulatory and anti-stress hormone: Its anti-aging effects. Immun. Lett.16 (1987) 355–362.Google Scholar
  36. 36.
    Quay, W., Relation of pineal acetylserotonin methyltransferase activity to daily photoperiod and light intensity. Archs Anat. Histol. et Embryol.51 (1968) 567–571.Google Scholar
  37. 37.
    Quay, W., Rhythmic and light-induced changes in levels of pineal 5-hydroxyindoles in the pigeon (Columbia livia). Gen. comp. Endocr.6 (1966) 371–377.PubMedGoogle Scholar
  38. 38.
    Ralph, C. L., Binkley, S., MacBride, S. E., Klein, D. Regulation of pineal rhythms in chickens: Effects of blinding, constant light, constant dark, and superior cervical ganglionectomy. Endocrinology97 (1975) 1373–1378.PubMedGoogle Scholar
  39. 39.
    Ralph, C. L., Hedlund, L., and Murphy, W. A., Diurnal cycles of melatonin in bird pineal bodies. Comp. Biochem. Physiol.22 (1967) 591–599.Google Scholar
  40. 40.
    Rebar, R. W., and Yen, S. S. C., Endocrine rhythms and ovarian steroids with reference to reproductive processes, in: Endocrine Rhythms, p. 264. Ed. D. T. Krieger. Raven Press, New York 1979.Google Scholar
  41. 41.
    Richter, C. P., Sleep and activity, their relation to the 24-hour clock, in: The Psychobiology of Curt Richter, pp. 128–147. Ed. E. Blass. York Press, Baltimore 1967.Google Scholar
  42. 42.
    Roenneberg, T., and Hastings, J. W., Are the effects of light on phase and period of theGonyaulax clock mediated by different pathways? Photochem. and Photobiol.53 (1991) 525–533.Google Scholar
  43. 43.
    Schwarz, W., and Gainor, H., Suprachiasmatic nucleus: Use of14C-labeled deoxyglucose uptake as a functional marker. Science197 (1977) 1089–1091.PubMedGoogle Scholar
  44. 44.
    Stephan, F., and Zucker, I., Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. natl Acad. Sci. USA69 (1972) 1583–1586.PubMedGoogle Scholar
  45. 45.
    Stern, N., Beahm, E., Sowers, J., McGinty, D., Eggena, P., Littner, M., Nyby, M., and Catania, R., The effect of age on circadian rhythm of blood pressure, catecholamines, plasma renin activity, prolactin, and corticosteroids in essential hypertension, in: Ambulatory Blood Pressure Monitoring, pp. 157–162. Eds M. A. Weber and J. I. M. Drayer. Steinkopff, Darmstadt 1984.Google Scholar
  46. 46.
    Sweeney, B. M., Rhythmic Phenomena in Plants. Academic Press, New York 1969.Google Scholar
  47. 47.
    Takahashi, J., Neuro and endocrine regulation of avian circadian systems. Ph.D. Dissertation, University of Oregon, Eugene 1981.Google Scholar
  48. 48.
    Tilders, F. J. H., and Smelik, P. G., A diurnal rhythm in melanocyte-stimulating hormone content of the rat pituitary gland and its independence from the pineal gland. Neuroendocrinology17 (1975) 296–308.PubMedGoogle Scholar
  49. 49.
    Underwood, H., and Groos, G., Vertebrate circadian rhythms: Retinal and extraretinal photoreception. Experientia38 (1982) 1013–1021.PubMedGoogle Scholar
  50. 50.
    Vivien-Roels, B., Arendt, J., and Bradke, J., Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) inTestudo hermanni Gmelin (Reptilia, Chelonia). Gen. comp. Endocr.37 (1979) 197–210.PubMedGoogle Scholar
  51. 51.
    Zimmerman, N., and Menaker, M., The pineal gland: A pacemaker within the circadian system of the house sparrow. Proc. natl Acad. Sci. USA76 (1979) 1167–1169.Google Scholar
  52. 52.
    Zrenner, C., Theories of pineal function from classical antiquity to 1900: A history, in: Pineal Research Reviews III. pp. 1–40. Ed. R. Reiter. Alan R. Liss, New York 1985.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1993

Authors and Affiliations

  • S. Binkley
    • 1
  1. 1.Biology DepartmentTemple UniversityPhiladelphiaUSA

Personalised recommendations