Advertisement

Experientia

, Volume 49, Issue 5, pp 456–469 | Cite as

Cytokines and proteoglycans

  • J. J. Nietfeld
Multi-author Reviews Proteoglycans

Abstract

Cytokines play an important regulatory role in the metabolism of proteoglycans. Proteoglycans are found in plasma membranes, but predominantly in the extra-cellular matrix. In the latter they are quantitatively and qualitatively essential components. Especially in a tissue like cartilage without any blood vessels, the cells are dependent on cytokines for the communication among themselves in the extra-cellular matrix and also for communication with the ‘outside world’. Various cytokines have been found to be able to penetrate the extra-cellular matrix and inhibit, respectively stimulate the proteoglycan synthesis. Also, the degradation of proteoglycans can be stimulated, respectively inhibited by several cytokines. In addition, some cytokines have been found which regulate the effects of the other cytokines. With respect to proteoglycan metabolism a complex cytokine network is emerging.

Furthermore it is becoming increasingly clear that proteoglycans are connected to the cytokine network by their own bioactive functions. First, they possibly possess cytokine activities themselves. Second, they can function as receptors, protectors, inactivators and storage ligands for cytokines. So the proteoglycans are clearly involved in the feedback signalling from the extra-cellular matrix to the cells that are synthesizing this extra-cellular matrix. Together with agonistic or antagonistic cytokines they are involved in the regulation of proteoglycan turnover during balanced or unbalanced metabolism in normal, respectively pathological situations.

Key words

Cytokines cytokine network proteoglycans protoglycan synthesis proteoglycan degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adashi, E. Y., Resnick, C. E., Svoboda, M. E., van Wyk, J. J., Hascall, V. C., and Yanagishita, M., Independent and synergistic actions of somatomedin-C in the stimulation of proteoglycan biosynthesis by cultured rat granulosa cells. Endocrinology118 (1986) 456–458.PubMedGoogle Scholar
  2. 2.
    Aggarwal, B. B., Traquina, P. R., and Eessalu, T. E., Modulation of receptors and cytotoxic response of tumor necrosis factor-alpha by various lectins. J. biol. Chem.261 (1986) 13652–13656.PubMedGoogle Scholar
  3. 3.
    Andres, J. L., DeFalcis, D., Noda, M., and Massague J., Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J. biol. Chem.267 (1992) 5927–5930.PubMedGoogle Scholar
  4. 4.
    Andres, J. L., Ronnstrand, L., Cheifetz, S., and Massague J., Purification of the transforming growth factor-beta (TGF-beta) binding proteoglycan betaglycan. J. biol. Chem.266 (1991) 23282–23287.PubMedGoogle Scholar
  5. 5.
    Andres, J. L., Stanley, K., Cheifetz, S., and Massague, J., Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factorbeta. J. Cell Biol.109 (1989) 3137–3145.CrossRefPubMedGoogle Scholar
  6. 6.
    Andrews, H. J., Bunning, R. A., Dinarello, C. A., and Russell, R. G., Modulation of human chondrocyte metabolism by recombinant human interferon gamma: in-vitro effects on basal and IL-1-stimulated proteinase production, cartilage degradation and DNA synthesis. Biochim. biophys. Acta1012 (1989a) 128–134.CrossRefPubMedGoogle Scholar
  7. 7.
    Andrews, H. J., Bunning, R. A., Plumpton, T. A., Clark, I. M., Russell, R. G., and Cawston, T. E., Inhibition of interleukin-1-induced collagenase production in human articular chondrocytes in vitro by recombinant human interferon-gamma. Arthritis Rheum.33 (1990) 1733–1738.PubMedGoogle Scholar
  8. 8.
    Andrews, H. J., Edwards, T. A., Cawston, T. E., and Hazleman, B. L., Transforming growth factor-beta causes partial inhibition of interleukin 1-stimulated cartilage degradation in vitro. Biochem. biophys. Res. Commun.162 (1989b) 144–150.CrossRefPubMedGoogle Scholar
  9. 9.
    Arend, W. P., Joslin,F. G., Thompson, R. C., and Hannum, C. H., An IL-1 inhibitior from human monocytes. Production and characterization of biologic properties. J. Immun.143 (1989) 1851–1858.PubMedGoogle Scholar
  10. 10.
    Arner, E. C., and Pratta, M. A., Independent effects of interleukin-1 on proteoglycan breakdown, proteoglycan synthesis, and prostaglandin E2 release from cartilage in organ culture. Arthritis Rheum.32 (1989) 288–297.PubMedGoogle Scholar
  11. 11.
    Balavoine, J. F., de Rochemonteix, B., Williamson, K., Seckinger, P., Cruchaud, A., and Dayer, J. M., Prostaglandin E2 and collagenase production by fibroblasts and synovial cells is regulated by urine-derived human interleukin 1 and inhibitor(s). J. clin. Invest.78 (1986) 1120–1124.PubMedGoogle Scholar
  12. 12.
    Baldwin, C. T., Reginato, A. M., and Prockop, D. J., A new epidermal growth factor-like domain in the human core protein for the large cartilage-specific proteoglycan. Evidence for alternative splicing of the domain. J. biol. Chem.264 (1989) 15747–15750.PubMedGoogle Scholar
  13. 13.
    Bar, R. S., Dake, B. L., and Stueck, S., Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells. Am. J. Physiol.253 (1987) E21-E27.PubMedGoogle Scholar
  14. 14.
    Bartold, P. M., Interleukin-1 stimulates proteoglycan and hyaluronic acid production by human gingival fibroblasts in vitro. Aust. dent. J.33 (1988) 467–475.PubMedGoogle Scholar
  15. 15.
    Bassols, A., and Massague, J., Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J. biol. Chem.263 (1988) 3039–3045.PubMedGoogle Scholar
  16. 16.
    Benton, H. P., and Tyler, J. A., Inhibition of cartilage proteoglycan synthesis by interleukin I. Biochem. biophys. Res. Commun.154 (1988) 421–428.CrossRefPubMedGoogle Scholar
  17. 17.
    Bernfield, M., and Hooper, K. C., Possible regulation of FGF activity by syndecan, an integral membrane heparan sulfate proteoglycan. Ann. N. Y. Acad. Sci.638 (1991) 182–194.PubMedGoogle Scholar
  18. 18.
    Beutler, B., Krochin, N., Milsark, I. W., Luedke, C., and Cerami, A., Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science232 (1986) 977–980.PubMedGoogle Scholar
  19. 19.
    Bourin, M. C., Lundgren Akerlund, E., and Lindahl, U., Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J. biol. Chem.265 (1990) 15424–15431.PubMedGoogle Scholar
  20. 20.
    Brunner, G., Gabrilove, J., Rifkin, D. B., and Wilson, E. L., Phospholipase C release of basic fibroblast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J. Cell Biol.114 (1991) 1275–1283.CrossRefPubMedGoogle Scholar
  21. 21.
    Bunning, R. A., Russel, R. G., and Van Damme, J., Independent induction of interleukin 6 and prostaglandin E2 by interleukin 1 in human articular chondrocytes. Biochem. biophys. Res. Commun.166 (1990) 1163–1170.Google Scholar
  22. 22.
    Burgess, W. H., Mehlman, T., Marshak, D. R., Fraser, B. A., and Maciag, T., Structural evidence that endothelial cell growth factor beta is the precursor of both endothelial cell growth factor alpha and acidic fibroblast growth factor. Proc. Natl. Acad. Sci. USA83 (1986) 7216–7220.PubMedGoogle Scholar
  23. 23.
    Campbell, I. K., Novak, U., Cebon, J., Layton, J. E., and Hamilton, J. A., Human articular cartilage and chondrocytes produce hemopoietic colony-stimulating factors in culture in response to IL-1. J. Immun.147 (1991) 1238–1246.PubMedGoogle Scholar
  24. 24.
    Chandrasekhar, S., and Harvey, A. K., Transforming growth factor-beta is a potent inhibitor of IL-1 induced protease activity and cartilage proteoglycan degradation. Biochem. biophys. Res. Commun.157 (1988) 1352–1359.CrossRefPubMedGoogle Scholar
  25. 25.
    Chandrasekhar, S., and Harvey, A. K., Induction of interleukin-1 receptors on chondrocytes by fibroblast growth factor: a possible mechanism for modulation of interleukin-1 activity. J. Cell Physiol.138 (1989) 236–246.CrossRefPubMedGoogle Scholar
  26. 26.
    Chandrasekhar, S., Harvey, A. K., and Hrubey, P. S., Intraarticular administration of interleukin-1 causes prolonged supression of cartilage proteoglycan synthesis in rats. Matrix12 (1992) 1–10.PubMedGoogle Scholar
  27. 27.
    Cheifetz, S., Bassols, A., Stanley, K., Ohta, M., Greenberger, J., and Massague, J., Heterodimeric transforming growth factor beta. Biological properties and interaction with three types of cell surface receptors. J. biol. Chem.263 (1988) 10783–10789.PubMedGoogle Scholar
  28. 28.
    Cheifetz, S., and Massague, J., Transforming growth factor-beta (TGF-beta) receptor proteoglycan. Cell surface expressions and ligand binding in the absence of glycosaminoglycan chains. J. biol. Chem.264 (1989) 12025–12028.PubMedGoogle Scholar
  29. 29.
    Chen, J. K., Hoshi, H., and McKeehan, W. L., Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc. natl Acad. Sci. USA84 (1987) 5287–5291.PubMedGoogle Scholar
  30. 30.
    Chen, J. K., Hoshi, H., and McKeehan, W. L., Stimulation of human arterial smooth muscle cell chondroitin sulfate proteoglycan synthesis by transforming growth factor-beta. In Vitro Cell. Dev. Biol.27 (1991) 6–12.PubMedGoogle Scholar
  31. 31.
    Chin, J. E., Hatfield, C. A., Krzesicki R. F., and Herblin, W. F., Interactions between interleukin-1 and basic fibroblast growth factor on articular chondrocytes. Effects on cell growth, prostanoid production, and receptor modulation. Arthritis Rheum.34 (1991) 314–324.PubMedGoogle Scholar
  32. 32.
    Chizzonite, R., Truit, T., Kilian, P. L., Stern, A. S., Nunes, P., Parker, K. P., Kaffka, K. L., Chua, A. O., Lugg, D. K., and Gubler, U., Two high-affinity interleukin 1 receptors represent separate gene products. Proc natl Acad. Sci. USA86 (1989) 8029–8033.PubMedGoogle Scholar
  33. 33.
    Clark, S. C., and Kamen, R., The human hematopoietic colony-stimulating factors. Science,236 (1987) 1229–1237.PubMedGoogle Scholar
  34. 34.
    Das, S. K., and Stanley, E. R., Structure-function studies of a colony stimulating factor (CSF-1). J. biol. Chem.257 (1982) 13679–13684.PubMedGoogle Scholar
  35. 35.
    Dayer, J. M., Beutler, B., and Cerami, A., Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial and dermal fibroblasts. J. exp. Med.162 (1985) 2163–2168.CrossRefPubMedGoogle Scholar
  36. 36.
    Dinarello, C. A., Biology of interleukin 1. FASEB J.2 (1988) 108–115.PubMedGoogle Scholar
  37. 37.
    Dinarello, C. A., Interleukin-1 and interleukin-1 antagonism. Blood77 (1991) 1627–1652.PubMedGoogle Scholar
  38. 38.
    Dinarello, C. A., The biology of interleukin-1. Chem. Immun.51 (1992) 1–32.Google Scholar
  39. 39.
    Dinarello, C. A., Cannon, J. G., Wolff, S. M., Bernheim, H. A., Beutler, B., Cerami, A., Figari, I. S., Palladino, M. A. J., and O'Connor, J. V., Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J. exp. Med.163 (1986) 1433–1450.CrossRefPubMedGoogle Scholar
  40. 40.
    Doi, T., Vlassara, H., Kirstein, M., Yamada, Y., Striker, G. E., and Striker, L. J., Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc. natl Acad. Sci. USA89 (1992) 2873–2877.PubMedGoogle Scholar
  41. 41.
    Dubois, C. M., Ruscetti, F. W., Jacobsen, S. E. W., Oppenheim, J. J., and Keller, J. R., Hematopoietic growth factors upregulate the p65 type II interleukin-I receptor on bone marrow progenitor cells in vitro. Blood80 (1992) 600–608.PubMedGoogle Scholar
  42. 42.
    Dubois, C. M., Ruscetti, F. W., Palaszynski, E. W., Falk, L. A., Oppenheim, J. J., and Keller, J. R., Transforming growth factor beta is a potent inhibitor of interleukin 1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action. J. exp. Med.172 (1990) 737–744.CrossRefPubMedGoogle Scholar
  43. 43.
    Eisenberg, S. P., Evans, R. J., Arend, W. P., Verderber, E., Brewer, M. T., Hannum, C. H., and Thompson R. C., Primary structure and functional expression from complementary DNA of a human interleukin-1 receptor antagonist. Nature343 (1990) 341–346.PubMedGoogle Scholar
  44. 44.
    Elenius, K., Maatta, A., Salmivirta, M., and Jalkanen, M., Growth factors induce 3T3 cells to express bFGF-binding syndecan. J. biol. Chem.267 (1992) 6435–6441.PubMedGoogle Scholar
  45. 45.
    Elenius, K., Salmivirta, M., Inki P., Mali, M., and Jalkanen, M., Binding of human syndecan to extracellular matrix proteins. J. biol. Chem.265 (1990) 17837–17843.PubMedGoogle Scholar
  46. 46.
    Esmon, C. T., The roles of protein C and thrombomodulin in the regulation of blood coagulation. J. biol. Chem.264 (1989) 4743–4746.PubMedGoogle Scholar
  47. 47.
    Fenton, M. J., Buras, J. A., and Donnelly, R. P., IL-4 reciprocally regulates IL-1 and IL-1 receptor antagonist expression in human monocytes. J. Immun.149 (1992) 1283–1288.PubMedGoogle Scholar
  48. 48.
    Fisher, L. W., Termine, J. D., and Young, M. F., Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with preoteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J. biol. Chem.264 (1989) 4571–4576.PubMedGoogle Scholar
  49. 49.
    Foreman, D. M., Sharpe, P. M., and Ferguson, M. W., Comparative biochemistry of mouse and chick secondarypalate development in vivo and in vitro with particular emphasis on extracellular matrix molecules and the effects of growth factors on their synthesis. Arch. oral Biol.36 (1991) 457–471.CrossRefPubMedGoogle Scholar
  50. 50.
    Franchimont, P., Bassleer, C., and Henrotin, Y., Effects of hormones and drugs on cartilage repair. J. Rheum. Suppl.18 (1989) 5–9.Google Scholar
  51. 51.
    Ganu, V. S., Goldberg, R. L., Blancuzzi, V. J., Wilson, D. E., Doughty, J., Melton, R., and O'Byrne, E., Elevation of synovial plasminogen activator activity after injection of interleukin-1 alpha into rabbit knee joint. Agents Actions34 (1991) 226–228.PubMedGoogle Scholar
  52. 52.
    Gordon, P. B., Choi, H. U., Conn, G., Ahmed, A., Ehrmann, B., Rosenberg, L., and Hatcher, V. B., Extracellular matrix heparan sulfate proteoglycans modulate the mitogenic capacity of acidic fibroblast growth factor. J. Cell Physiol.140 (1989) 584–592.CrossRefPubMedGoogle Scholar
  53. 53.
    Goustin, A. S., Leof, E. B., Shipley, G. D., and Moses, H. L., Growth factors and cancer. Cancer. Res.46 (1986) 1015–1029.PubMedGoogle Scholar
  54. 54.
    Gowen, M., Wood, D. D., Ihrie, E. J., Meats, J. E., and Russell, R. G., Stimulation by human interleukin 1 of cartilage breakdown and production of collagenase and proteoglycanase by human chondrocytes but not by human osteoblasts in vitro. Biochim. biophys. Acta797 (1984) 186–193.PubMedGoogle Scholar
  55. 55.
    Görgen, I., Hartung, T., Leist, M., Niehörster, M., Tiegs, G., Uhlig, S., Weitzel, F., and Wendel, A., Granulocyte colonystimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor-α. J. Immun.149 (1992) 918–924.PubMedGoogle Scholar
  56. 56.
    Guerne, P. A., Carson, D. A., and Lotz, M., IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immun.144 (1990) 499–505.PubMedGoogle Scholar
  57. 57.
    Hamilton, J. A., Hart, P. H., Leizer, T., Vitti, G. F., and Campbell, I. K., Regulation of plasminogen activator activity in arthritic joints. J. Rheum. Suppl.27 (1991) 106–109.Google Scholar
  58. 58.
    Hannum, C. H., Wilcox, C. J., Arend, W. P., Joslin, F. G., Dripps, D. J., Heimdal, P. L., Armes, L. G., Sommer, A., Eisenberg, S. P., and Thompson, R. C., Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature343 (1990) 336–340.PubMedGoogle Scholar
  59. 59.
    Hardingham, T., and Bayliss, M., Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin. Arthritis Rheum.20 (1990) 12–33.CrossRefPubMedGoogle Scholar
  60. 60.
    Hardingham, T. E., Beardmore Gray, M., Dunham, D. G., and Ratcliffe, A., Cartilage proteoglycans. Ciba Found. Symp.124 (1986) 30–46.PubMedGoogle Scholar
  61. 61.
    Hardingham, T. E., and Fosang, A. J., Proteoglycans: many forms and many functions. FASEB J.6 (1992a) 861–870.PubMedGoogle Scholar
  62. 62.
    Hardingham, T. E., Fosang, A. J., and Dudhia, J., Aggrecan, the chondroitin sulfate/keratan sulfate proteoglycan from cartilage, in: Articular Cartilage and Osteoarthritis, pp. 5–18. Eds K. E. Kuettner, R. Schleyerbach, J. G. Peyron and V. C. Hascall, Raven Press, New York 1992.Google Scholar
  63. 63.
    Harriman, G. R., and Strober, W., Interleukin 5, a mucosal lymphokine. J. Immun.139 (1987) 3553–3555.PubMedGoogle Scholar
  64. 64.
    Harvey, A. K., Hrubey, P. S., and Chandrasekhar, S., Transforming growth factor-beta inhibition of interleukin-1 activity involves down-regulation of interleukin-1 receptors on chondrocytes. Exp. Cell Res.195 (1991) 376–385.CrossRefPubMedGoogle Scholar
  65. 65.
    Hasler, F., and Dayer, J. M., Diminished IL-2 induced gamma-interferon production by unstimulated peripheralblood lymphocytes in rheumatoid arthritis. Br. J. Rheum.27 (1988) 15–20.Google Scholar
  66. 66.
    Heinegard, D., and Oldberg, A., Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J.3 (1989) 2042–2051.PubMedGoogle Scholar
  67. 67.
    Henderson, B., and Pettipher, E. R., Arthritogenic actions of recombinant IL-1 and tumour necrosis factor alpha in the rabbit: evidence for synergistic interactions between cytokines in vivo. Clin. exp. Immun.75 (1989) 306–310.PubMedGoogle Scholar
  68. 68.
    Henderson, B., Thompson, R. C., Hardingham, T., and Lewthwaite, J., Inhibition of interleukin-1-induced synovitis and articular cartilage proteoglycan loss in the rabbit knee by recombinant human interleukin-1 receptor antagonist. Cytokine3 (1991) 246–249.CrossRefPubMedGoogle Scholar
  69. 69.
    Hickery, M. S., Vilim, V., Bayliss, M. T., and Hardingham, T. E., Effect of interleukin-1 and tumour necrosis factoralpha on the turnover of proteoglycans in human articular cartilage. Biochem. Soc. Trans.18 (1990) 953–954.PubMedGoogle Scholar
  70. 70.
    Hiraki, Y., Inoue, H., Hirai, R., Kato, Y. and Suzuki, F., Effect of transforming growth factor beta on cell proliferation and glycosaminoglycan, synthesis by rabbit growth-plate chondrocytes in culture. Biochim. biophys. Acta969 (1988) 91–99.CrossRefPubMedGoogle Scholar
  71. 71.
    Hiraki, Y., Yutani, Y., Takigawa, M., Kato, Y., and Suzuki, F., Differential effects of parathyroid hormone and somatomedin-like growth factors on the sizes of proteoglycan monomers and their synthesis in rabbit costal chondrocytes in culture. Biochim. biophys. Acta845 (1985) 445–453.CrossRefPubMedGoogle Scholar
  72. 72.
    Hopp, T. P., Dower, S. K., and March, C. J., The molecular forms of interleukin-1. Immun. Res.5 (1986) 271–280.Google Scholar
  73. 73.
    Inoue, H., Kato, Y., Iwamoto, M., Hiraki, Y., Sakuda, M., and Suzuki, F., Stimulation of cartilage-matrix proteoglycan synthesis by morphologically transformed chondrocytes grown in the presence of fibroblast growth factor and transforming growth factor-beta. J. Cell Physiol.138 (1989) 329–337.CrossRefPubMedGoogle Scholar
  74. 74.
    Jansen, J. H., Fibbe, W. E., Willemze, R., and Kluin Nelemans, J. C., Interleukin-4. A regulatory protein. Blut60 (1990) 269–274.Google Scholar
  75. 75.
    Kahari, V. M., Larjava, H., and Uitto, J., Differential regulation of extracellular matrix proteoglycan (PG) gene expression. Transforming growth factor-beta 1 up-regulates biglycan (PGI), and versican (large fibroblast PG) but downregulates decorin (PGII) mRNA levels in human fibroblasts in culture. J. biol. Chem.266 (1991) 10608–10615.PubMedGoogle Scholar
  76. 76.
    Kallunki, P., and Tryggvason, K., Human basement membrane heparan sulfate proteoglycan core protein: A 467-kDa protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. Cell Biol.116 (1992) 559–571.CrossRefPubMedGoogle Scholar
  77. 77.
    Kandel, R. A., Petelycky, M., Dinarello, C. A., Minden, M., Pritzker, K. P., and Cruz, T. F., Comparison of the effect of interleukin 6 and interleukin 1 on collagenase and proteoglycan production by chondrocytes. J. Rheum.17 (1990) 953–957.PubMedGoogle Scholar
  78. 78.
    Kiefer, M. C., Stephans, J. C., Crawford, K., Okino, K., and Barr, P. J., Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc. natl Acad. Sci. USA87 (1990) 6985–6989.PubMedGoogle Scholar
  79. 79.
    Kinoshita, A., Takigawa, M., and Suzuki, F., Demonstration of receptors for epidermal growth factor on cultured rabbit chondrocytes and regulation of their expression by various growth and differentiation factors. Biochem. biophys. Res. Commun.183 (1992) 14–20.CrossRefPubMedGoogle Scholar
  80. 80.
    Kohase, M., May, L. T., Tamm, I., Vilcek, J., and Sehgal, P. B., A cytokine network in human diploid fibroblasts: interactions of beta-interferons, tumor necrosis factor, platelet-derived growth factor, and interleukin-1. Molec. cell. Biol.7 (1987) 273–280.PubMedGoogle Scholar
  81. 81.
    Krusius, T., Gehlsen, K. R., and Ruoslahti, E., A fibroblast chondroitin sulfate proteoglycan core protein contains lectinlike and growth-like sequences. J. biol. Chem.262 (1987) 13120–13125.PubMedGoogle Scholar
  82. 82.
    Lanfrancone, L., Ferrero, D., Gallo, E., Foa, R., and Tarella, C., Release of hemopoietic factors by normal human T cell lines with either suppressor or helper activity. J. Cell Physiol.122 (1985) 7–13.CrossRefPubMedGoogle Scholar
  83. 83.
    Laver, J., Castro Malaspina, H., Kernan, N. A., Levick, J., Evans, R. L., O'Reilly, R. J., and Moore, M. A., In vitro interferon-gamma production by cultured T-cells in severe aplastic anaemia: correlation with granulomonopoietic inhibition in patients who respond to anti-thymocyte globulin. Br. J. Haemat.69 (1988) 545–550.Google Scholar
  84. 84.
    Lipsky, P. E., Davis, L. S., Cush, J. J., and Oppenheimer Marks, N., The role of cytokines in the pathogenesis of rheumatoid arthritis. Springer Semin. Immunopath.11 (1989) 123–162.Google Scholar
  85. 85.
    Lopez Casillas, F., Cheifetz, S., Doody, J., Andres, J. L., Lane, W. S., and Masague, J., Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell67 (1991) 785–795.CrossRefPubMedGoogle Scholar
  86. 86.
    Lotz, M., and Guerne, P. A., Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J. biol. Chem.266 (1991) 2017–2020.PubMedGoogle Scholar
  87. 87.
    Luyten, F. P., Hascall, V. C., Nissley, S. P., Morales, T. I., and Reddi, A. H., Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Archs Biochem. Biophys.,267 (1988) 416–425.CrossRefGoogle Scholar
  88. 88.
    Maher, D. W., Davis, I., Boyd, A. W., and Morstyn, G., Human interleukin-4: an immunomodulator with potential therapeutic applications. Prog. Growth Factor Res.3 (1991) 43–56.CrossRefPubMedGoogle Scholar
  89. 89.
    Malemud, C. J., Killeen, W., Hering, T. M., and Purchio, A. F., Enhanced sulfated-proteoglycan core protein synthesis by incubation of rabbit chondrocytes with recombinant transforming growth factor-beta 1. J. Cell Physiol.149 (1991) 152–159.CrossRefPubMedGoogle Scholar
  90. 90.
    Mali, M., Jaakkola, P., Arvilommi, A. M., and Jalkanen, M., Sequence of human syndecan indicates a novel gene family of integral membrane proteoglycans. J. biol. Chem.265 (1990) 6884–6889.PubMedGoogle Scholar
  91. 91.
    Maroudas, A., and Schneiderman, R., “Free” and “exchangeable” or “trapped” and “non-exchangeable” water in cartllage. J. orthop. Res.5 (1987) 133–138.CrossRefPubMedGoogle Scholar
  92. 92.
    Maroudas, A., Weinberg, P. D., Parker, K. H., and Winlove, C. P., The distributions and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys. Chem.32 (1988) 257–270.CrossRefPubMedGoogle Scholar
  93. 93.
    Martel Pelletier, J., Zafarullah, M., Kodama, S., and Pelletier, J. P., In vitro effects of interleukin 1 on the synthesis of metalloproteases, TIMP, plasminogen activators and inhibitors in human articular cartilage. J. Rheum. Suppl.27 (1991) 80–84.Google Scholar
  94. 94.
    McColl, S. R., Paquin, R., Ménard, C., and Beaulieu, A. D., Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor α. J. exp. Med.176 (1992) 593–598.CrossRefPubMedGoogle Scholar
  95. 95.
    McCollum, R., Martel Pelletier, J., DiBattista, J., and Pelletier, J. P., Regulation of interleukin 1 receptors in human articular chondrocytes. J. Rheum. Suppl.27 (1991) 85–88.Google Scholar
  96. 96.
    McQuillan, D. J., Handley, C. J., Campbell, M. A., Bolis, S., Milway, V. E., and Herington, A. C., Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem. J.240 (1986) 423–430.PubMedGoogle Scholar
  97. 97.
    Meyer, D. H., Bachem, M. G., and Gressner, A. M., Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type beta 1 and type alpha. Biochem. biophys. Res. Commun.171 (1990) 1122–1129.CrossRefPubMedGoogle Scholar
  98. 98.
    Migliaccio, A. R., Migliaccio, G., Adamson, J. W., and Torok-Storb, B., Production of granulocyte colony-stimulating factor and granulocyte/macrophage-colony-stimulating factor after interleukin-1 stimulation of marrow stromal cell cultures from normal or aplastic anemia donors. J. Cell Physiol.152 (1992) 199–206.CrossRefPubMedGoogle Scholar
  99. 99.
    Morales, T. I., Transformation growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures. Archs Biochem. Biophys.286 (1991) 99–106.CrossRefGoogle Scholar
  100. 100.
    Morales, T. I., and Roberts, A. B., Transforming growth factor beta regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J. biol. Chem.263 (1988) 12828–12831.PubMedGoogle Scholar
  101. 101.
    Murdoch, A. D., Dodge, G. R., Cohen, I., Tuan, R. S., and Iozzo, R. V., Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J. biol. Chem.267 (1992) 8544–8557.PubMedGoogle Scholar
  102. 102.
    Nataf, V., Tsagris, L., Dumontier, M. F., Bonaventure, J., and Corvol, M., Modulation of sulfated proteoglycan synthesis and collagen gene expression by chondrocytes grown in the presence of bFGF alone or combined with IGF1. Reprod. Nutr. Dev.30 (1990) 331–342.PubMedGoogle Scholar
  103. 103.
    Nawroth, P. P., Bank, I., Handley, D., Cassimeris, J., Chess, L., and Stern, D., Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J. exp. Med.163 (1986) 1363–1375.CrossRefPubMedGoogle Scholar
  104. 104.
    Nietfeld, J. J., Wilbrink, B., den Otter, W., Huber Bruning, O., Helle, M., Aarden, L. A., and Swaak, A. J. G., In the presence of rIL-1α and rIL-1β, human articular cartilage produces IL-6. Revue Rhumat.55 (1988) 862–863.Google Scholar
  105. 105.
    Nietfeld, J. J., Wilbrink, B., den Otter, W., Huber, J., and Huber Bruning, O., The effect of human interleukin 1 on proteoglycan metabolism in human and porcine cartilage explants. J. Rheum.17 (1990a) 818–826.PubMedGoogle Scholar
  106. 106.
    Nietfeld, J. J., Wilbrink, B., Helle, M., van Roy, J. L., den Otter, W., Swaak, A. J., and Huber Bruning, O., Interleukin-1-induced interleukin-6 is required for the inhibition of proteoglycan synthesis by interleukin-1 in human articular cartilage. Arthritis Rheum.33 (1990b) 1695–1701.PubMedGoogle Scholar
  107. 107.
    Noonan, D. M., Fulle, A., Valente, P., Cai, S., Horigan, E., Sasaki, M., Yamada, Y., and Hassell, J. R., The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein receptor, and the neural cell adhesion molecule. J. biol. Chem.266 (1991) 22939–22947.PubMedGoogle Scholar
  108. 108.
    Nugent, M. A., Lane, E. A., Keski Oja, J., Moses, H. L., and Newman, M. J., Growth stimulation, altered regulation of epidermal growth factor receptors, and autocrine transformation of spontaneously transformed normal rat kidney cells by transforming growth factor beta. Cancer Res.49 (1989) 3884–3890.PubMedGoogle Scholar
  109. 109.
    O'Hara, B. P., Urban, J. P., and Maroudas, A., Influence of cyclic loading on the nutrition of articular cartilage. Ann. rheum. Dis.49 (1990) 536–539.PubMedGoogle Scholar
  110. 110.
    Oldberg, A., Antonsson, P., Hedbom, E., and Heinegard, D., Structure and function of extracellular matrix proteoglycans. Biochem. Soc. Trans.18 (1990) 789–792.PubMedGoogle Scholar
  111. 111.
    Ollivierre, F., Gubler, U., Towle, C. A., Laurencin, C., and Treadwell, B. V., Expression of IL-1 genes in human and bovine chondrocytes: a mechanism for autocrine control of cartilage matrix degradation. Biochem. biophys. Res. Commun.141 (1986) 904–911.CrossRefPubMedGoogle Scholar
  112. 112.
    Orino, E., Sone, S., Nii, A., and Ogura, T., IL-4 up-regulates IL-1 receptor antagonist gene expression and its production in human blood monocytes. J. Immun.149 (1992) 925–931.PubMedGoogle Scholar
  113. 113.
    Osborn, K. D., Trippel, S. B., and Mankin, H. J., Growth factor stimulation of adult articular cartilage. J. orthop. Res.7 (1989) 35–42.CrossRefPubMedGoogle Scholar
  114. 114.
    Palombella, V. J., Yamashiro, D. J., Maxfield, F. R., Decker, S. J., and Vilcek, J., Tumor necrosis factor increases the number of epidermal growth factor receptors on human fibroblasts. J. biol. Chem.262 (1987) 1950–1954.PubMedGoogle Scholar
  115. 115.
    Parker, K. H., Winlove, C. P., and Maroudas, A., The theoretical distributions and diffusivities of small ions in chondroitin sulphate and hyaluronate. Biophys. Chem.32 (1988) 271–282.CrossRefPubMedGoogle Scholar
  116. 116.
    Pasternak, R. D., Hubbs, S. J., Caccese, R. G., Marks, R. L., Conaty, J. M., and DiPasquale, G., Interleukin-1 stimulates the secretion of proteoglycan- and collagen-degrading proteases by rabbit articular chondrocytes. Clin. Immun. Immunopath.41 (1986) 351–367.CrossRefPubMedGoogle Scholar
  117. 117.
    Pasternak, R. D., Hubbs, S. J., Caccese, R. G., Marks, R. L., Conaty, J. M., and DiPasquale, G., Interleukin-1 induces chondrocyte protease production: the development of collagenase inhibitors. Agents Actions21 (1987) 328–330.PubMedGoogle Scholar
  118. 118.
    Pekala, P. H., Price, S. R., Horn, C. A., Hom, B. E., Moss, J., and Cerami, A., Model for cachexia in chronic disease: secretory products of endotoxin-stimulated macrophages induce a catabolic state in 3T3-L1 adipocytes. Trans. Assoc. Am. Physicians97 (1984) 251–259.PubMedGoogle Scholar
  119. 119.
    Peracchia, F., Ferrari, G., Poggi, A., and Rotilio, D., IL-1 beta-induced expression of PDGF-AA isoform in rabbit articular chondrocytes is modulated by TGF-beta 1. Exp. Cell Res.193 (1991) 208–212.CrossRefPubMedGoogle Scholar
  120. 120.
    Pettipher, E. R., Higgs, G. A., and Henderson, B., Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc. natl Acad. Sci. USA83 (1986) 8749–8753.PubMedGoogle Scholar
  121. 121.
    Philip, R., and Epstein, L. B., Tumour necrosis factor as immunomodular and mediator of monocyte cytotoxicity induced by itself, gamma-interferon and interleukin-1. Nature323 (1986) 86–89.CrossRefPubMedGoogle Scholar
  122. 122.
    Piacibello, W., Lu, L., Williams, D., Aglietta, M., Rubin, B. Y., Cooper, S., Wachter, M., Gavosto, F., and Broxmeyer, H. E., Human gamma interferon enhances release from phytohemagglutinin-stimulated T4+lymphocytes of activities that stimulate colony formation by granulocyte-macrophage, erythroid, and multipotential progenitor cells. Blood68 (1986) 1339–1347.PubMedGoogle Scholar
  123. 123.
    Price, L. K., Choi, H. U., Rosenberg, L., and Stanley, E. R., The predominant form of screted colony stimulating factor-1 is a proteoglycan. J. biol. Chem.267 (1992) 2190–2199.PubMedGoogle Scholar
  124. 124.
    Prins, A. P., Lipman, J. M., McDevitt, C. A., and Sokoloff, L., Effect of purified growth factors on rabbit articular chondrocytes in monolayer culture. II. Sulfated proteoglycan synthesis. Arthritis Rheum.25 (1982) 1228–1238.PubMedGoogle Scholar
  125. 125.
    Pujol, J. P., Galera, P., Redini, F., Mauviel, A., and Loyau, G., Role of cytokines in osteoarthritis: comparative effects of interleukin 1 and transforming growth factor-beta on cultured rabbit articular chondrocytes. J. Rheum. Suppl.27 (1991) 76–79.Google Scholar
  126. 126.
    Rapraeger, A., Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. J. Cell Biol.109 (1989) 2509–2518.CrossRefPubMedGoogle Scholar
  127. 127.
    Rath, N. C., Oronsky, A. L., and Kerwar, S. S., Synthesis of interleukin-1-like activity by normal rat chondrocytes in culture. Clin. Immun. Immunopath.47 (1988) 39–46.CrossRefPubMedGoogle Scholar
  128. 128.
    Roberts, R., Gallagher, J., Spooncer, E., Allen, T. D., Bloomfield, F., and Dexter, T. M., Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature332 (1988) 376–378.CrossRefPubMedGoogle Scholar
  129. 129.
    Rothenberg, M. E., Pomerantz, J. L., Owen, W. F. J., Avraham, S., Soberman, R. J., Austen, K. F., and Stevens, R. L., Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/marcophage colony stimulating factor. J. biol. Chem.263 (1988) 13901–13908.PubMedGoogle Scholar
  130. 130.
    Roux Lombard, P., Modoux, C., and Dayer, J. M., Production of interleukin-1 (IL-1) and a specific IL-1 inhibitor during human monocyte-macrophage differentiation: infuence of GM-CSF. Cytokine1 (1989) 45–51.CrossRefPubMedGoogle Scholar
  131. 131.
    Ruoslahti, E. and Yamaguchi, Y., Proteoglycans as modulators of growth factor activities. Cell64 (1991) 867–869.CrossRefPubMedGoogle Scholar
  132. 132.
    Sakaguchi, K., Yanagishita, M., Takeuchi, Y., and Aurbach, G. D., Identification of heparan sulfate proteoglycan as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line. J. biol. Chem.266 (1991) 7270–7278.PubMedGoogle Scholar
  133. 133.
    Saklatvala, J., Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature322 (1986) 547–549.CrossRefPubMedGoogle Scholar
  134. 134.
    Saklatvala, J., and Bird, T., A common class of receptors for the two types of porcine interleukin-1 on articular chondrocytes. Lymphokine Res.5 Suppl. 1 (1986) S99-S104.PubMedGoogle Scholar
  135. 135.
    Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol.107 (1988) 743–751.CrossRefPubMedGoogle Scholar
  136. 136.
    Saksela, O., and Rifkin, D. B., Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J. Cell Biol.110 (1990) 767–775.CrossRefPubMedGoogle Scholar
  137. 137.
    Savona, C., Chambaz, E. M., and Feige, J. J., Proteoheparan sulfates contribute to the binding of basic FGF to its high affinity receptors on bovine adrenocortical cells. Growth Factors5 (1991) 273–282.PubMedGoogle Scholar
  138. 138.
    Schonherr, E., Jarvelainen, H. T., Sandell, L. J., and Wight, T. N., Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J. biol. Chem.266 (1991) 17640–17647.PubMedGoogle Scholar
  139. 139.
    Seckinger, P., Lowenthal, J. W., Williamson, K., Dayer, J. M., and MacDonald, H. R., A urine inhibitor of interleukin 1 activity that blocks ligand binding. J. Immun.139 (1987) 1546–1549.PubMedGoogle Scholar
  140. 140.
    Seckinger, P., Williamson, K., Balavoine, J. F., Mach, B., Mazzei, G., Shaw, A., and Dayer, J. M., A urine inhibitor of interleukin 1 activity affects both interleukin 1 alpha and 1 beta but not tumor necrosis factor alpha. J. Immun.139 (1987) 1541–1545.PubMedGoogle Scholar
  141. 141.
    Segarini, P. R., TGF-beta receptors. Ciba Found. Sump.157 (1991) 29–40.Google Scholar
  142. 142.
    Seyedin, S. M., Thompson, A. Y., Bentz, H., Rosen, D. M., McPherson, J. M., Conti, A., Siegel, N. R., Galluppi, G. R., and Piez, K. A., Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J. biol. Chem.261 (1986) 5693–5695.PubMedGoogle Scholar
  143. 143.
    Sherry, B., and Cerami, A., Cachetin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J. Cell Biol.107 (1988) 1269–1277.CrossRefPubMedGoogle Scholar
  144. 144.
    Shinmei, M., Masuda, K., Kikuchi, T., and Shimomura, Y., The role of cytokines in chondrocyte mediated cartilage degradation. J. Rheum. Suppl.18 (1989a) 32–34.Google Scholar
  145. 145.
    Shinmei, M., Masuda, K., Kikuchi, T., and Shimomura, Y., Interleukin 1, tumor necrosis factor, and interleukin 6 as mediators of cartilage destruction. Semin. Arthritis Rheum.18 (1989b) 27–32.CrossRefPubMedGoogle Scholar
  146. 146.
    Sieff, C. A., Hematopoietic growth factors. J. clin. Invest.79 (1987) 1549–1557.PubMedGoogle Scholar
  147. 147.
    Sinkovics, J. G., Oncogenes and growth factors. Crit. Rev. Immun.8 (1988) 217–298.Google Scholar
  148. 148.
    Snyers, L., and Content, J., Enhancement of IL-6 receptor β chain (gp 130) expression by IL-6, IL-1 and TNF in human epithelial cells. Biochem. biophys. Res. Commun.185 (1992) 902–908.CrossRefPubMedGoogle Scholar
  149. 149.
    Sporn, M. B., and Roberts, A. B., Peptide growth factors and inflammation, tisue repair, and cancer. J. clin. Invest.78 (1986) 329–332.PubMedGoogle Scholar
  150. 150.
    Sporn, M. B., Roberts, A. B., Wakefield, L. M., and de Crombrugghe, B., Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol.105 (1987) 1039–1045.CrossRefPubMedGoogle Scholar
  151. 151.
    Stanescu, V., Chaminade, F., and Pham, T. D., Immunological detection of the EGF-like domain of the core proteins of large proteoglycans from human and baboon cartilage. Connect. Tissue Res.26 (1991) 283–293.PubMedGoogle Scholar
  152. 152.
    Stevens, P., and Shatzen, E. M., Synergism of basic fibroblast growth factor and interleukin-1 beta to induce articular cartilage-degradation in the rabbit. Agents Actions34 (1991) 217–219.PubMedGoogle Scholar
  153. 153.
    Suzu, S., Ohtsuki, T., Yanai, N., Takatsu, Z., Kawashima, T., Takaku, F., Nagata, N., and Motoyoshi, K., Identification of a high molecular weight macrophage colony-stimulating factor as a glycosaminoglycan-containing species. J. biol. Chem.267 (1992) 4345–4348.PubMedGoogle Scholar
  154. 154.
    Takii, T., Akahoshi, T., Kato, K., Hayashi, H., Marunouchi, T., and Onozaki, K., Interleukin-1 up-regulates transcription of its own receptor in a human fibroblast cell line TIG-1: Role of endogenous PGE2 and cAMP. Eur. J. Immun.22 (1992) 1221–1227.Google Scholar
  155. 155.
    Tan, E. M., Levine, E., Sorger, T., Unger, G. A., Hacobian, N., Planck, B., and Iozzo, R. V., Heparin and endothelial cell growth factor modulate collagen and proteoglycan production in human smooth muscle cells. Biochem. biophys. Res. Commun.163 (1989) 84–92.CrossRefPubMedGoogle Scholar
  156. 156.
    Tsujimoto, M., Yip, Y. K., and Vilcek, J., Interferon-gamma enhances expression of cellular receptors for tumor necrosis factor. J. Immun.136 (1986) 2441–2444.PubMedGoogle Scholar
  157. 157.
    Tyler, J. A., Articular cartilage culture with catabolin (pig interleukin 1) synthesizes a decreased number of normal proteoglycan molecules. Biochem. J.227 (1985) 869–878.PubMedGoogle Scholar
  158. 158.
    Tyler, J. A., Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem. J.260 (1989) 543–548.PubMedGoogle Scholar
  159. 159.
    Van Snick, J., Interleukin-6: an overview. A. Rev. Immun.8 (1990) 253–278.Google Scholar
  160. 160.
    Vigny, M., Ollier Hartmann, M. P., Lavigne, M., Fayein, N., Jeanny, J. C., Laurent, M., and Courtois, Y., Specific binding of basic fibroblast growth factor to basement membranelike structures and to purified heparan sulfate proteoglycan of the EHS tumor. J. Cell Physiol.137 (1988) 321–328.CrossRefPubMedGoogle Scholar
  161. 161.
    Vlodavsky, I., Bar Shavit, R., Ishai Michaeli, R., Bashkin, P., and Fuks, Z., Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends biochem. Sci.16 (1991) 268–271.CrossRefPubMedGoogle Scholar
  162. 162.
    Vogel, K. G., Paulsson, M., and Heinegard, D., Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J.223 (1984) 587–597.PubMedGoogle Scholar
  163. 163.
    Vogel, K. G., and Trotter, J. A., The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll. relat. Res.7 (1987) 105–114.PubMedGoogle Scholar
  164. 164.
    Watanabe, Y., Kashihara, N., Makino, H., and Kanwar, Y. S., Modulation of glomerular proteoglycans by insulin-like growth factor-1. Kidney Int.41 (1992) 1262–1273.PubMedGoogle Scholar
  165. 165.
    Westergren-Thorsson, G., Schmidtchen, A., Särnstrand, B., Fransson, L.-Å., and Malmström, A., Transforming growth factor-β induces selective increase of proteoglycan production and changes in the copolymeric structure of dermatan sulphate in human skin fibroblasts. Eur. J. Biochem.105 (1992) 277–286.CrossRefGoogle Scholar
  166. 166.
    Wilbrink, B., Nietfeld, J. J., den Otter, W., van Roy, L. L., Bijlsma, J. W., and Huber Burning, O., Role of TNF alpha, in relation to IL-1 and IL-6 in the proteoglycan turnover of human articular cartilage. Br. J. Rheum.30 (1991) 265–271.Google Scholar
  167. 167.
    Xu, W. D., Firestein, G. S., Taetle, R., Kaushansky, K., and Zvaifler, N. J., Cytokines in chronic inflammatory arthritis. II. Granulocyte-macrophage colony-stimulating factor in rheumatoid synovial effusions. J. Clin. Invest.83 (1989) 876–882.PubMedGoogle Scholar
  168. 168.
    Yahya, Z. A., Bates, P. C., and Millward, D. J., Responses to protein deficiency of plasma and tissue insulin-like growth factor-I levels and proteoglycan synthesis rates in rat skeletal muscle and bone. J. Endocr.127 (1990) 497–503.PubMedGoogle Scholar
  169. 169.
    Yamaguchi, Y., Mann, D. M., and Ruoslahti, E., Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature346 (1990) 281–284.CrossRefPubMedGoogle Scholar
  170. 170.
    Yaron, I., Meyer, F. A., Dayer, J. M., Bleiberg, I., and Yaron, M., Some recombinant human cytokines stimulate glycosaminoglycan synthesis in human synovial fibroblast cultures and inhibit it in human articular cartilage cultures. Arthritis Rheum.32 (1989) 173–180.PubMedGoogle Scholar
  171. 171.
    Zimmermann, D. R., and Ruoslahti, E., Multiple domains of the large fibrobalst proteoglycan, versican. EMBO J.8 (1989) 2975–2981.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • J. J. Nietfeld
    • 1
  1. 1.Departments of Pathology and RheumatologyUniversity HospitalUtrechtThe Netherlands

Personalised recommendations