Skip to main content
Log in

Evaluating the fate of genetically modified microorganisms in the environment: Are they inherently less fit?

  • Multi-author Reviews
  • Gene Technology and Biodiversity
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Genetically modified microorganisms hold great promise for environmental applications. Nonetheless, some may have unintended adverse effects. Of particular concern for risk assessment is the simple fact that microorganisms are self-replicating entities, so that it may be impossible to control an adverse effect simply by discontinuing further releases of the organism. It has been suggested, however, that genetically modified microorganisms will be poor competitors and therefore unable to persist in the wild due to energetic inefficiency, disruption of genomic coadaptation, or domestication. Many studies support the hypothesis that genetically modified microorganisms are less fit than their progenitors, but there are a few noteworthy counter-examples in which genetic modifications unexpectedly enhance competitive fitness. Furthermore, subsequent evolution may eliminate the maladaptive effects of some genes, increasing the likelihood that a modified organism or its engineered genes will persist. Evaluating the likelihood that a genetically modified microorganism or its engineered genes will persist is a complex ecological and evolutionary problem. Therefore, an efficient regulatory framework would require such evaluations only when there are plausible scenarios for significant adverse environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmann, M., ‘Biopesticides’ turning into pests? Trends Ecol. Evol.7 (1992) 65.

    Article  CAS  PubMed  Google Scholar 

  2. Andrews, K. J., and Hegeman, G. D., Selective disadvantage of nonfunctional protein synthesis inEscherichia coli. J. molec. Evol.8 (1976) 317–328.

    Article  CAS  PubMed  Google Scholar 

  3. Bassford, P. J. Jr, Silhavy, T. J., and Beckwith, J. R., Use of gene fusion to study secretion of maltose-binding protein intoEscherichia coli periplasm. J. Bact.139 (1979) 19–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett, A. F., and Lenski, R. E., Evolutionary adaptation to temperature. II. Thermal niches of experimental lines ofEscherichia coli. Evolution47 (1993) 1–12.

    Article  PubMed  Google Scholar 

  5. Bennett, A. F., Lenski, R. E., and Mittler, J. E., Evolutionary adaptation to temperature. I. Fitness responses ofEscherichia coli to changes in its thermal environment. Evolution46 (1992) 16–30.

    Article  PubMed  Google Scholar 

  6. Biel, S. W., and Hartl, D. L., Evolution of transposons: natural selection for Tn5 inEscherichia coli K12. Genetics103 (1983) 581–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouma, J. E., and Lenski, R. E., Evolution of a bacteria/plasmid association. Nature335 (1988) 351–352.

    Article  CAS  PubMed  Google Scholar 

  8. Brill, W. J., Safety concerns and genetic engineering in agriculture. Science227 (1985) 381–384.

    Article  PubMed  Google Scholar 

  9. Clarke, G. M., and McKenzie, J. A., Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature325 (1987) 345–346.

    Article  CAS  Google Scholar 

  10. Cohan, F. M., King, E. C., and Zawadzki, P., Amelioration of the deleterious pleiotropic effects of an adaptive mutation inBacillus subtilis. Evolution, in press.

  11. Croft, B. A., and Brown, A. W. A., Responses of arthropod natural enemies to pesticides. A. Rev. Ent.20 (1975) 285–335.

    Article  CAS  Google Scholar 

  12. DaSilva, N. A., and Bailey, J. E., Theoretical growth yield estimates for recombinant cells. Biotechnol. Bioeng.28 (1986) 741–746.

    Article  CAS  Google Scholar 

  13. Davies, J., Genetic engineering: processes and products. Trends Ecol. Evol.3 (1988) S7-S11.

    Article  CAS  PubMed  Google Scholar 

  14. Davis, B. D., Bacterial domestication: underlying assumptions. Science235 (1987) 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  15. DeBach, P., Biological Control by Natural Enemies. Cambridge University Press, London 1974.

    Google Scholar 

  16. Dykhuizen, D. E., Selection for tryptophan auxotrophs ofEscherichia coli in glucose-limited chemostats as a test of the energy conservation hypothesis of evolution. Evolution32 (1978) 125–150.

    CAS  PubMed  Google Scholar 

  17. Dykhuizen, D. E., Experimental studies of natural selection in bacteria. A. Rev. ecol. Syst.21 (1990) 378–398.

    Article  Google Scholar 

  18. Dykhuizen, D. E., Experimental evolution: replicating history. Trends Ecol. Evol.7 (1992) 250–252.

    Article  CAS  PubMed  Google Scholar 

  19. Dykhuizen, D. E., Campbell, J. H., and Rolfe, B. G., The influence of prophage on the growth rate ofE. coli. Microbios23 (1978) 99–113.

    CAS  PubMed  Google Scholar 

  20. Dykhuizen, D. E., and Davies, M., An experimental model: bacterial specialists and generalists competing in chemostats. Ecology61 (1980) 876–882.

    Article  Google Scholar 

  21. Dykhuizen, D. E., and Hartl, D. L., Selective neutrality of 6GPD allozymes inE. coli and the effects of genetic background. Genetics96 (1980) 801–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dykhuizen, D. E., and Hartl, D. L., Selection in chemostats. Microbiol. Rev.47 (1983) 150–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eckert, B., and Beck, C. F., Overproduction of transposon Tn10-encoded tetracycline resistance protein results in cell death and loss of membrane potential. J. Bact.171 (1989) 3557–3559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edlin, G., Lin, L., and Kudrna, R., Lambda lysogens ofE. coli reproduce more rapidly than non-lysogens. Nature255 (1975) 735–737.

    Article  CAS  PubMed  Google Scholar 

  25. Edlin, G., Tait, R. C., and Rodriguez, R. L., A bacteriophage Lambda cohesive ends (cos) DNA fragment enhances the fitness of plasmid-containing bacteria growing in energy-limited chemostats. Bio/Technology2 (1984) 251–254.

    CAS  Google Scholar 

  26. Futuyma, D. J., Evolutionary Biology, 2nd edn. Sinauer Associates, Sunderland, Massachusetts 1986.

    Google Scholar 

  27. Gould, F., Genetic engineering, integrated pest management and the evolution of pests. Trends Ecol. Evol.3 (1988) S15-S18.

    Article  CAS  PubMed  Google Scholar 

  28. Hartl, D. L., Dykhuizen, D. E., Miller, R. D., Green, L., and deFramond, J., Transposable element IS50 improves growth rate ofE. coli cells without transposition. Cell35 (1983) 503–510.

    Article  CAS  PubMed  Google Scholar 

  29. Ito, K., Bassford, P. J. Jr., and Beckwith, J., Protein localization inE. coli: is there a common step in the secretion of periplasmic and outer-membranes proteins? Cell24 (1991) 707–717.

    Article  Google Scholar 

  30. Kim, J., Ginzburg, L. R., and Dykhuizen, D. E., Quantifying the risks of invasion by genetically engineered organisms, in: Assessing Ecological Risks of Biotechnology, pp. 193–214. Ed. L. R. Ginzburg. Butterworth-Heinemann, Boston 1991.

    Chapter  Google Scholar 

  31. Koch, A. L., The protein burden oflac operon products. J. molec. Evol.19 (1983) 455–462.

    Article  CAS  PubMed  Google Scholar 

  32. Lenski, R. E., The infectious spread of engineered genes, in: Application of Biotechnology: Environmental and Policy Issues, pp. 99–124. Ed. J. R. Fowle, III. American Association for the Advancement of Science, Washington, D. C. 1987.

    Google Scholar 

  33. Lenski, R. E., Experimental studies of pleiotropy and epistasis inEscherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution42 (1988) 425–432.

    PubMed  Google Scholar 

  34. Lenski, R. E., Experimental studies of pleiotropy and epistasis inEscherichia coli. II. Compensation for maladaptive pleiotropic effects associated with resistance to virus T4. Evolution42 (1988) 433–440.

    PubMed  Google Scholar 

  35. Lenski, R. E., Quantifying fitness and gene stability in micro-organisms, in: Assessing Ecological Risks of Biotechnology, pp. 173–192. Ed. L. R. Ginzburg. Butterworth-Heinemann, Boston 1991.

    Chapter  Google Scholar 

  36. Lenski, R. E., Relative fitness: its estimation and its significance for environmental applications of microorganisms, in: Microbial Ecology: Principles, Applications and Methods, pp 183–198. Eds M. Levin, R. Seidler and M. Rogul. McGraw-Hill, New York 1992.

    Google Scholar 

  37. Lenski, R. E., Experimental evolution, in: Encyclopedia of Microbialogy, Vol. 2, pp. 125–140. Ed. J. Lederberg. Acdemic Press, San Diego, California 1992.

    Google Scholar 

  38. Lenski, R. E., and Bouma, J. E., Effects of segregation and selection on instability of pACYC184 inEscherichia coli B. J. Bact.169 (1987) 5314–5316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenski, R. E., and Levin, B. R., Constraints on the coevolution of bacteria and virulent phage: a model some experiments, and predictions for natural communities. Am. Nat.125 (1985) 585–602.

    Article  Google Scholar 

  40. Lenski, R. E., and Nguyen, T. T., Stability of recombinant DNA and its effects on fitness. Trends Ecol. Evol.3 (1988) S18-S20.

    Article  CAS  PubMed  Google Scholar 

  41. Lenski, R. E., Rose, M. R., Simpson, S. C., and Tadler, S. C., Long-term experimental evolution inEscherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat.138 (1991) 1315–1341.

    Article  Google Scholar 

  42. Levin, B. R., and Lenski, R. E., Coevolution in bacteria and their viruses and plasmids, in: Coevolution, pp. 99–127. Eds D. J. Futuyma and M. Slatkin. Sinauer Associates, Sunderland, Massachusetts 1983.

    Google Scholar 

  43. Lin, L., Bitner, R., and Edlin, G., Increased reproductive fitness ofEscherichia coli Lambda lysogens. J. Virol.21 (1977) 554–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKenzie, J. A., Whitten, M. J., and Adena, M. A., The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly,Lucilia cuprina. Heredity49 (1982) 1–9.

    Article  Google Scholar 

  45. Modi, R. I., and Adams, J., Coevolution in bacteria-plasmid populations. Evolution45 (1991) 656–667.

    Article  PubMed  Google Scholar 

  46. Moyed, H. S., Nguyen, T. T., and Bertrand, K. P., Multicopy Tn10 tet plasmids confer sensitivity to induction oftet gene expression. J. Bact.155 (1983) 549–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. National Research Council (Committee on Scientific Evaluation of the Introduction of Genetically Modified Microorganisms and Plants into the Environment). Field Testing Genetically Modified Organisms: Framework for Decisions. National Academy Press, Washington, D. C. 1989.

    Google Scholar 

  48. Nguyen, T. N. M., Phan, Q. G., Duong, L. P., Bertrand, K. P., and Lenski, R. E. Effects of carriage and expression of the Tn10 tetracycline resistance operon on the fitness ofEscherichia coli K12. Molec. Biol. Evol.6 (1989) 213–225.

    CAS  PubMed  Google Scholar 

  49. Regal, P. J., Models of genetically engineered organisms and their ecological impact, in: Ecology of Biological Invasions of North America and Hawaii, pp. 111–129. Eds H. A. Mooney and J. A. Drake. Springer-Verlag, New York 1986.

    Chapter  Google Scholar 

  50. Regal, P. J., The adaptive potential of genetically engineered organisms in nature. Trends Ecol. Evol.3 (1988) S36-S38.

    Article  CAS  PubMed  Google Scholar 

  51. Tiedje, J. M., Colwell, R. K., Grossman, Y. L., Hodson, R., Lenski, R. E., Mack, R. N., and Regal, P. J., The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology70 (1989) 298–315.

    Article  Google Scholar 

  52. Vogel, T. M., and McCarty, P. L., Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. envir. Microbiol.49 (1985) 1080–1083.

    Article  CAS  Google Scholar 

  53. Woodwell, G. M., Wurster, C. F. Jr., and Isaacson, P. A., DDT residues in an east coast estuary: a case of biological concentration of a persistent pesticide. Science156 (1967) 821–823.

    Article  CAS  PubMed  Google Scholar 

  54. Zamenhof, S., and Eichhorn, H. H., Study of microbial evolution through loss of biosynthetic funtions: establishment of ‘defective’ mutants. Nature216 (1987) 456–458.

    Article  Google Scholar 

  55. Zund, P., and Lebek, G., Generation time-prolonging R plasmids: correlation between increases in the generation time ofEscherichia coli caused by R plasmids and their molecular size. Plasmid3 (1980) 65–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenski, R.E. Evaluating the fate of genetically modified microorganisms in the environment: Are they inherently less fit?. Experientia 49, 201–209 (1993). https://doi.org/10.1007/BF01923527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923527

Key words

Navigation