Skip to main content

Advertisement

Log in

Heat shock response in the central nervous system

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The heat shock response is induced in nervous tissue in a variety of clinically significant experimental models including ischemic brain injury (stroke), trauma, thermal stress and status epilepticus. Excessive excitatory neurotransmission or the inability to metabolically support normal levels of excitatory neurotransmission may contribute to neuronal death in the nervous system in many of the same pathophysiologic circumstances. We demonstrated that in vitro glutamate-neurotransmitter induced excitotoxicity is attenuated by the prior induction of the heat shock response. A short thermal stress induced a pattern of protein synthesis characteristic of the highly conserved heat shock response and increased the expression of heat shock protein (HSP) mRNA. Protein synthesis was necessary for the neuroprotective effect. The study of the mechanisms of heat shock mediated protection may lead to important clues as to the basic mechanisms underlying the molecular actions of the HSP and the factors important for excitotoxic neuronal injury. The clinical relevance of these findings in vitro is suggested by experiments performed by others in vivo demonstrating that pretreatment of animals with a submaximal thermal or ischemis stress confers protection from a subsequent ischemic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashburner, M., and Bonner, J. J., The induction of gene activity in Drosophila by heat shock. Cell17 (1979) 241–254.

    Article  CAS  PubMed  Google Scholar 

  2. Barbe, M. F., Tytell, M., Gower, D. J., and Welch, W. J., Hyperthermia protects against light damage in the rat retina. Science241 (1988) 1817–1820.

    Article  CAS  PubMed  Google Scholar 

  3. Beal, M. F., Hyman, B. T., and Koroshetz, W. J., Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative disease? Trends Neurosci.16 (1993) 125–131.

    Article  CAS  PubMed  Google Scholar 

  4. Black, M. M., Chestnut, M. H., Pleasure, I. T., and Keen, J. H., Stable clathrin: uncoating protein (hsc70) complexes in intact neurons and their axonal transport. J. Neurosci.11 (1991) 2263–2272.

    Article  Google Scholar 

  5. Cheetham, M. E., Biron, J. P., and Anderton, B. H., Human homologues of the bacterial heat-shock protein DNAJ are preferentially expressed in neurons. Biochem. J.284 (1992) 469–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L., Sequence of the Ion gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J. biol. Chem.263 (1988) 11718–28.

    Article  CAS  PubMed  Google Scholar 

  7. Choi, D. W., Ionic dependence of glutamate neurotoxicity in cortical cell culture. J. neurosci.7 (1987) 379–379.

    Google Scholar 

  8. Choi, D. W., Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci.10 (1990) 2493–2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chopp, M., Chen, H., Ho, K., Dereski, K. L., Brown, E., Hetzel, F. W., and Welch, K. M., Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology39 (1989) 1396–1398.

    Article  CAS  PubMed  Google Scholar 

  10. Csernansky, C. A., Canzoniero, L. M. T., and Choi, D. W., Delayed application of aurintricarboxylic acid reduced glutamate neurotoxicity in culture. Soc. Neurosci. Abstr.19 (1993) 25.

    Google Scholar 

  11. Dawson, V. L., Dawson, T. L., London, E. D., Bredt, B. S., and Snyder, S. H., Nitric oxide medates glutamate neurotoxicity in primary cortical cultures. Proc. natl Acad. Sci. USA88 (1991) 6368–6371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DeLuca-Flaherty, C., McKay, D. B., Parham, P., and Hill, B. L., Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis. Cell62 (1990) 875–887.

    Article  CAS  PubMed  Google Scholar 

  13. Dwyer, B. E., Nishimura, R. N., and Brown, I. R., Synthesis of the major inducible heat shock protein in rat hippocampus after neonatal hypoxiaischemia. Expl. Neurol.104 (1989) 28–31.

    Article  CAS  Google Scholar 

  14. Evans, D. P., Corbin, J. R., and Tomasovic, S. P., Effects of calcium buffering on the synthesis of the 26 kDa heat-shock protein family. Radiat. Res.127 (1991) 261–268.

    Article  CAS  PubMed  Google Scholar 

  15. Furshpan, E. J., and Potter, D. D., Seizure-like activity and cellular damage in rat hipocampal neurons in cell culture. Neuron3 (1989) 199–207.

    Article  CAS  PubMed  Google Scholar 

  16. Hollman, M., and Heinemann, S., Cloned glutamate receptors. A. Rev. Neurosci.17 (1994) 31–108.

    Article  Google Scholar 

  17. Johnston, K. N., and Kucey, B. L., Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science242 (1988) 1551–1554.

    Article  CAS  PubMed  Google Scholar 

  18. Kang, P. J., Ostermann, J., Shilling, J., Neupert, W., Craig, E. A., and Phanner, N., Requirement for HSP70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature348 (1990) 137–142.

    Article  CAS  PubMed  Google Scholar 

  19. Kantengwa, S., Capponi, A. M., Bonventre, J. V., and Polla, B. S., Calcium and the heat-shock response in the human monocytic line U-937. Am. J. Physiol.259 (1990) C77–83.

    Article  CAS  PubMed  Google Scholar 

  20. Khan, N. A., and Sotelo, J., Heat shock stress is deleterious to CNS cultured neurons microinjected with anti-HSP70 antibodies. Biol. Cell65 (1989) 199–202.

    Article  CAS  PubMed  Google Scholar 

  21. Kinouchi, H., Sharp, F. R., Chan, P. H., Koistinaho, J., Sagar, S. M., and Yoshimoto, T., Induction of c-fos, jumB, c-jun, and hsp70 mRNA in cortex, thalamus, basal ganglia, and hippocampus following middle cerebral artery occlusion. J. Cerebr. Blood Flow Metab.13 (1994) 105–115.

    Article  Google Scholar 

  22. Kitagawa, K., Matsumoto, M., Tagaya, T., Hata, R., Ueda, H., Ninobe, M., Handa, N., and Kamada, T., Ischemic tolerance phenomenon found in brain. Brain Res.528 (1990) 21–24.

    Article  CAS  PubMed  Google Scholar 

  23. Koroshetz, W. J., and Furshpan, E. J., Seizure-like activity and glutamate receptors in hippocampal neurons in culture. Neurosci. Res.13 (1990) S65-S74.

    CAS  Google Scholar 

  24. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J., The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature332 (1988) 462–464.

    Article  CAS  PubMed  Google Scholar 

  25. Lafon Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J., NMDA-dependent superoxide production and neurotoxicity. Nature364 (1993) 535–537.

    Article  CAS  PubMed  Google Scholar 

  26. Landry, J., Chratien, P., Lambert, H., Hickey, E., and Weber, L. A., Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol.109 (1989) 7–15.

    Article  CAS  PubMed  Google Scholar 

  27. Landry, J., Crete, P., Lamarch, S., and Chretien, P., Activation of Ca2+-dependent processes during heat shock: role in cell thermoresistance. Radiat. Res.113 (1988) 426–436.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, K. S., Frank, S., Vanderklish, P., Arai, A., and Lynch, G., Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc. natl. Acad Sci. USA88 (1991) 7233–7237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leustek, T., Amir-Shapira, D., Toledo, H., Brot, N., and Weissbach, H., Autophosphorylation of 70 kDa heat shock proteins. Cell. molec. Biol.38 (1992) 1–10.

    CAS  Google Scholar 

  30. Leustek, T., Dalie, B., Amir-Shapira, D., Brot, N., and Weissbach, H., A member of the HSP70 family is localized in mitochondria and resembles Escherichia coli Dnak. Proc. natl Acad. Sci. USA86 (1989) 7805–7808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lindquist, S., The heat-shock response. A. Rev. Biochem.55 (1986) 1151–1191.

    Article  CAS  Google Scholar 

  32. Liu, Y., Kato, H., Nakata, N., and Kogure, K., Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res.586 (1992) 121–124.

    Article  CAS  PubMed  Google Scholar 

  33. Lowenstein, D. H., Chan, P. H., and Miles, M. F., The stress protein response in cultured neurons: characterization and avidence for a protective role in excitotoxicity. Neuron7 (1991) 1053–1060.

    Article  CAS  PubMed  Google Scholar 

  34. Lowenstein, D. H., Simon, R. P., and Sharp, F. R., The pattern of 72kDa heat shock protein-like immunoreactivity in the rat brain following flurothyl-induced status epilepticus. Brain Res.531 (1990) 173–182.

    Article  CAS  PubMed  Google Scholar 

  35. Manning-Krieg, U. C., Scherer, P. E., and Schatz, G., Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J.10 (1991) 3273–3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marini, A. M., Kozuka, M., Lipsky, R. H., and Nowak, T. S., 70-kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: Comparison with immunocytochemical localization after hyperthermia in vivo. J. Neurochem.54 (1990) 1509–1516.

    Article  CAS  PubMed  Google Scholar 

  37. Mattson, M. P., Murrain, M., Guthrie, P. B., and Kater, S. B., Fibroblast growth factor and glutamate: opposing actions in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosc.9 (1989) 3728–3740.

    Article  CAS  Google Scholar 

  38. Miller, E., Raese, J. D., and Morrison-Bogorad, M., Expression of heat shock protein 70 and heat shock cognate messenger RNAs in rat cortex and cerebellum after heat shock or amphetamine treatment. J. Neurochem.56 (1991) 2060–2071.

    Article  CAS  PubMed  Google Scholar 

  39. Miyata, Y., and Yahara, I., Cytoplasmic 8 S glucocorticoid receptor binds to actin filaments through the 90-kDa heat shock protein moiety. J. biol. Chem.266 (1991) 8779–8783.

    Article  CAS  PubMed  Google Scholar 

  40. Mizzen, L. A., Chang, C., Garrels, J. I., and Welch, W. J., Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp75, a member of the hsp70 family and hsp58, a homolog of the bacterial groEL protein. J. biol. Chem.264 (1989) 20664–20675.

    Article  CAS  PubMed  Google Scholar 

  41. Monyer, H., Harley, D. M., and Choi, D. W., 21-aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron5 (1990) 121–126.

    Article  CAS  PubMed  Google Scholar 

  42. Mosser, D. D., Kotzbaure, P. T., Sarge, K. D., and Morimoto, R. I., In vitro activation of heat-shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. natl Acad. Sci. USA87 (1990) 3748–3752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nowak, T. S., Synthesis of a stress protein following transient ischemia in the gerbil. J. Neurochem.45 (1985) 1635–1641.

    Article  CAS  PubMed  Google Scholar 

  44. Nowak, T. S., Bond, U., and Schlesinger, M. J., Heat-shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J. Neurochem.54 (1990) 451–458.

    Article  CAS  PubMed  Google Scholar 

  45. Pelham, H., HSP70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J.3 (1984) 3095–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pelham, H., Hpeculation on the function of the major heat shock and glucose-regulated proteins. Cell46 (1986) 959–961.

    Article  CAS  PubMed  Google Scholar 

  47. Picard, D., Khursheed, B., Garabedian, M., Fortin, M., Lindquist, S., and Yamamoto, K., Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature348 (1990) 166–168.

    Article  CAS  PubMed  Google Scholar 

  48. Price, B. D., and Calderwood, S. K., Calcium is essential for multistep activation of the heat shock factor in permeabilized cells. Molec. cell Biol.11 (1991) 3365–3368.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Riabowol, K. T., Mizzen, L. A., and Welch, W. J., Heat shock is lethal to fibroblasts microinjected with antibodies against HSP70. Science242 (1988) 433–436.

    Article  CAS  PubMed  Google Scholar 

  50. Rordorf, G., Koroshetz, W. J., and Bonventre, J. V., Heat shock protects cultured neurons from glutamate toxicity. Neuron7 (1991) 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  51. Rose, K., Bruno, R., Oliker, R., and Choi, D. W., Nordihydroguairetic acid attenuates slow excitatory amino acid-induced neuronal degeneration in cortical cultures. Soc. Neurosci. Abstr.16 (1990) 288.

    Google Scholar 

  52. Rosenberg, P. A., Amin, S., and Leitner, M., Glutamate uptake disguises neurotoxic potency of glutamate agonists in dissociated cell culture. J. Neurosci.12 (1992) 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rothman, S. M., Thruston, J. H., and Hauhart, R. E., Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience22 (1987) 471–480.

    Article  CAS  PubMed  Google Scholar 

  54. Sharp, F. R., Lowenstein, D., Simon, R. P., and Hisanga, K., Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J. Cerebr. Blood Flow Metab.11 (1991) 621–627.

    Article  CAS  Google Scholar 

  55. Sherman, M. Y. U., and Goldberg, A. L., Involvement of the chaperonin dnaK in the rapid degraduation of a mutant protein in Escherichia coli. EMBO J11 (1992) 71–77.

    Article  CAS  PubMed Central  Google Scholar 

  56. Shimosaka, S., So, Y. T., and Simon, R. P., Distribution of HSP72 induction and neuronal death following limbic seizures. Neurosci. Lett138 (1992) 202–206.

    Article  CAS  PubMed  Google Scholar 

  57. Siman, R., and Noszek, J. C., Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron1 (1988) 279–287.

    Article  CAS  PubMed  Google Scholar 

  58. Simon, R., Cho, J., Gwinn, R., and Lowenstein, D., The temporal profile of 72kd heat shock protein expression following global ischemia. J. Neurosci.11 (1991) 881–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Simon, R. P., Niiro, M., and Gwinn, R., Prior ischemic stress protects against experimental stroke. Neurosci. Lett.163 (1993) 135–137.

    Article  CAS  PubMed  Google Scholar 

  60. Sloviter, R. S., and Lowenstein, D. H., Heat shock expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. J. Neurosci.12 (1992) 3004–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sorger, P. K., and Pelham, H. R., Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell54 (1988) 855–864.

    Article  CAS  PubMed  Google Scholar 

  62. Stevenson, M. A., and Calderwood, S. K., Members of the 70kDa heat shock protein family contain a highly conserved calmodulin-binding domain. Molec. cell. Biol.10 (1990) 1234–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ting, L. P., Tu, C. L., and Chou, C. K., Insulin-induced expression of human heat-shock protein gene hsp70. J. biol. Chem.264 (1989) 3404–3408.

    Article  CAS  PubMed  Google Scholar 

  64. Tymianski, M., Wallace, M. C., Spigleman, I., Uno, M., Carlen, P. L., Tator, C. H., and Charlton, M. P., Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron11 (1993) 221–235.

    Article  CAS  PubMed  Google Scholar 

  65. Tytell, M., Greenberg, S., and Lasek, R., Heat shock-like protein is transferred from glia to axon. Brain Res.363 (1986) 161–164.

    Article  CAS  PubMed  Google Scholar 

  66. Vass, K., Berger, M. L., Nowak, T. S., Welch, W. J., and Lassman, H., Induction of stress protein HSP70 in nerve cells after status epilepticus in the rat. Neurosci. Lett.100 (1989) 259–264.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Z. H., Vidair, C. A., and Dewey, W. C., Maintenance of intracellular free Ca++ homeostasis following lethalheat shock. Radiat. Res.128 (1991) 104–107.

    Article  CAS  PubMed  Google Scholar 

  68. Welch, W. J., and Suhan, J. P., Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell Biol.103 (1986) 2035–2052.

    Article  CAS  PubMed  Google Scholar 

  69. Wertheimer, E. S., Cerasi, E., and Ben-Neriah, Y., The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc. natl Acad. Sci. USA88 (1991) 2525–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Whatley, S. A., Leung, T., Hall, C., and Lin, L., The brain 68-kilodalton microtubule-associated protein is a cognate form of the 70-kilodalton mammalian heat-shock protein and is present as a specific isoform in synaptosomal membranes. J. Neurochem.47 (1986) 1576–1583.

    Article  CAS  PubMed  Google Scholar 

  71. Wu, C., Wilson, S., Walker, B., Dawid, I., Paisley, T., Zimarino, V., and Ueda, H., Purification and properties of drosophilia heat shock activator protein. Science238 (1987) 1247–1253.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koroshetz, W.J., Bonventre, J.V. Heat shock response in the central nervous system. Experientia 50, 1085–1091 (1994). https://doi.org/10.1007/BF01923465

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923465

Key words

Navigation