Abstract
The heat shock response is induced in nervous tissue in a variety of clinically significant experimental models including ischemic brain injury (stroke), trauma, thermal stress and status epilepticus. Excessive excitatory neurotransmission or the inability to metabolically support normal levels of excitatory neurotransmission may contribute to neuronal death in the nervous system in many of the same pathophysiologic circumstances. We demonstrated that in vitro glutamate-neurotransmitter induced excitotoxicity is attenuated by the prior induction of the heat shock response. A short thermal stress induced a pattern of protein synthesis characteristic of the highly conserved heat shock response and increased the expression of heat shock protein (HSP) mRNA. Protein synthesis was necessary for the neuroprotective effect. The study of the mechanisms of heat shock mediated protection may lead to important clues as to the basic mechanisms underlying the molecular actions of the HSP and the factors important for excitotoxic neuronal injury. The clinical relevance of these findings in vitro is suggested by experiments performed by others in vivo demonstrating that pretreatment of animals with a submaximal thermal or ischemis stress confers protection from a subsequent ischemic insult.
Similar content being viewed by others
References
Ashburner, M., and Bonner, J. J., The induction of gene activity in Drosophila by heat shock. Cell17 (1979) 241–254.
Barbe, M. F., Tytell, M., Gower, D. J., and Welch, W. J., Hyperthermia protects against light damage in the rat retina. Science241 (1988) 1817–1820.
Beal, M. F., Hyman, B. T., and Koroshetz, W. J., Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative disease? Trends Neurosci.16 (1993) 125–131.
Black, M. M., Chestnut, M. H., Pleasure, I. T., and Keen, J. H., Stable clathrin: uncoating protein (hsc70) complexes in intact neurons and their axonal transport. J. Neurosci.11 (1991) 2263–2272.
Cheetham, M. E., Biron, J. P., and Anderton, B. H., Human homologues of the bacterial heat-shock protein DNAJ are preferentially expressed in neurons. Biochem. J.284 (1992) 469–476.
Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L., Sequence of the Ion gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J. biol. Chem.263 (1988) 11718–28.
Choi, D. W., Ionic dependence of glutamate neurotoxicity in cortical cell culture. J. neurosci.7 (1987) 379–379.
Choi, D. W., Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci.10 (1990) 2493–2501.
Chopp, M., Chen, H., Ho, K., Dereski, K. L., Brown, E., Hetzel, F. W., and Welch, K. M., Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology39 (1989) 1396–1398.
Csernansky, C. A., Canzoniero, L. M. T., and Choi, D. W., Delayed application of aurintricarboxylic acid reduced glutamate neurotoxicity in culture. Soc. Neurosci. Abstr.19 (1993) 25.
Dawson, V. L., Dawson, T. L., London, E. D., Bredt, B. S., and Snyder, S. H., Nitric oxide medates glutamate neurotoxicity in primary cortical cultures. Proc. natl Acad. Sci. USA88 (1991) 6368–6371.
DeLuca-Flaherty, C., McKay, D. B., Parham, P., and Hill, B. L., Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis. Cell62 (1990) 875–887.
Dwyer, B. E., Nishimura, R. N., and Brown, I. R., Synthesis of the major inducible heat shock protein in rat hippocampus after neonatal hypoxiaischemia. Expl. Neurol.104 (1989) 28–31.
Evans, D. P., Corbin, J. R., and Tomasovic, S. P., Effects of calcium buffering on the synthesis of the 26 kDa heat-shock protein family. Radiat. Res.127 (1991) 261–268.
Furshpan, E. J., and Potter, D. D., Seizure-like activity and cellular damage in rat hipocampal neurons in cell culture. Neuron3 (1989) 199–207.
Hollman, M., and Heinemann, S., Cloned glutamate receptors. A. Rev. Neurosci.17 (1994) 31–108.
Johnston, K. N., and Kucey, B. L., Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science242 (1988) 1551–1554.
Kang, P. J., Ostermann, J., Shilling, J., Neupert, W., Craig, E. A., and Phanner, N., Requirement for HSP70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature348 (1990) 137–142.
Kantengwa, S., Capponi, A. M., Bonventre, J. V., and Polla, B. S., Calcium and the heat-shock response in the human monocytic line U-937. Am. J. Physiol.259 (1990) C77–83.
Khan, N. A., and Sotelo, J., Heat shock stress is deleterious to CNS cultured neurons microinjected with anti-HSP70 antibodies. Biol. Cell65 (1989) 199–202.
Kinouchi, H., Sharp, F. R., Chan, P. H., Koistinaho, J., Sagar, S. M., and Yoshimoto, T., Induction of c-fos, jumB, c-jun, and hsp70 mRNA in cortex, thalamus, basal ganglia, and hippocampus following middle cerebral artery occlusion. J. Cerebr. Blood Flow Metab.13 (1994) 105–115.
Kitagawa, K., Matsumoto, M., Tagaya, T., Hata, R., Ueda, H., Ninobe, M., Handa, N., and Kamada, T., Ischemic tolerance phenomenon found in brain. Brain Res.528 (1990) 21–24.
Koroshetz, W. J., and Furshpan, E. J., Seizure-like activity and glutamate receptors in hippocampal neurons in culture. Neurosci. Res.13 (1990) S65-S74.
Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J., The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature332 (1988) 462–464.
Lafon Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J., NMDA-dependent superoxide production and neurotoxicity. Nature364 (1993) 535–537.
Landry, J., Chratien, P., Lambert, H., Hickey, E., and Weber, L. A., Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol.109 (1989) 7–15.
Landry, J., Crete, P., Lamarch, S., and Chretien, P., Activation of Ca2+-dependent processes during heat shock: role in cell thermoresistance. Radiat. Res.113 (1988) 426–436.
Lee, K. S., Frank, S., Vanderklish, P., Arai, A., and Lynch, G., Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc. natl. Acad Sci. USA88 (1991) 7233–7237.
Leustek, T., Amir-Shapira, D., Toledo, H., Brot, N., and Weissbach, H., Autophosphorylation of 70 kDa heat shock proteins. Cell. molec. Biol.38 (1992) 1–10.
Leustek, T., Dalie, B., Amir-Shapira, D., Brot, N., and Weissbach, H., A member of the HSP70 family is localized in mitochondria and resembles Escherichia coli Dnak. Proc. natl Acad. Sci. USA86 (1989) 7805–7808.
Lindquist, S., The heat-shock response. A. Rev. Biochem.55 (1986) 1151–1191.
Liu, Y., Kato, H., Nakata, N., and Kogure, K., Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res.586 (1992) 121–124.
Lowenstein, D. H., Chan, P. H., and Miles, M. F., The stress protein response in cultured neurons: characterization and avidence for a protective role in excitotoxicity. Neuron7 (1991) 1053–1060.
Lowenstein, D. H., Simon, R. P., and Sharp, F. R., The pattern of 72kDa heat shock protein-like immunoreactivity in the rat brain following flurothyl-induced status epilepticus. Brain Res.531 (1990) 173–182.
Manning-Krieg, U. C., Scherer, P. E., and Schatz, G., Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J.10 (1991) 3273–3289.
Marini, A. M., Kozuka, M., Lipsky, R. H., and Nowak, T. S., 70-kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: Comparison with immunocytochemical localization after hyperthermia in vivo. J. Neurochem.54 (1990) 1509–1516.
Mattson, M. P., Murrain, M., Guthrie, P. B., and Kater, S. B., Fibroblast growth factor and glutamate: opposing actions in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosc.9 (1989) 3728–3740.
Miller, E., Raese, J. D., and Morrison-Bogorad, M., Expression of heat shock protein 70 and heat shock cognate messenger RNAs in rat cortex and cerebellum after heat shock or amphetamine treatment. J. Neurochem.56 (1991) 2060–2071.
Miyata, Y., and Yahara, I., Cytoplasmic 8 S glucocorticoid receptor binds to actin filaments through the 90-kDa heat shock protein moiety. J. biol. Chem.266 (1991) 8779–8783.
Mizzen, L. A., Chang, C., Garrels, J. I., and Welch, W. J., Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp75, a member of the hsp70 family and hsp58, a homolog of the bacterial groEL protein. J. biol. Chem.264 (1989) 20664–20675.
Monyer, H., Harley, D. M., and Choi, D. W., 21-aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron5 (1990) 121–126.
Mosser, D. D., Kotzbaure, P. T., Sarge, K. D., and Morimoto, R. I., In vitro activation of heat-shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. natl Acad. Sci. USA87 (1990) 3748–3752.
Nowak, T. S., Synthesis of a stress protein following transient ischemia in the gerbil. J. Neurochem.45 (1985) 1635–1641.
Nowak, T. S., Bond, U., and Schlesinger, M. J., Heat-shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J. Neurochem.54 (1990) 451–458.
Pelham, H., HSP70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J.3 (1984) 3095–3100.
Pelham, H., Hpeculation on the function of the major heat shock and glucose-regulated proteins. Cell46 (1986) 959–961.
Picard, D., Khursheed, B., Garabedian, M., Fortin, M., Lindquist, S., and Yamamoto, K., Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature348 (1990) 166–168.
Price, B. D., and Calderwood, S. K., Calcium is essential for multistep activation of the heat shock factor in permeabilized cells. Molec. cell Biol.11 (1991) 3365–3368.
Riabowol, K. T., Mizzen, L. A., and Welch, W. J., Heat shock is lethal to fibroblasts microinjected with antibodies against HSP70. Science242 (1988) 433–436.
Rordorf, G., Koroshetz, W. J., and Bonventre, J. V., Heat shock protects cultured neurons from glutamate toxicity. Neuron7 (1991) 1043–1051.
Rose, K., Bruno, R., Oliker, R., and Choi, D. W., Nordihydroguairetic acid attenuates slow excitatory amino acid-induced neuronal degeneration in cortical cultures. Soc. Neurosci. Abstr.16 (1990) 288.
Rosenberg, P. A., Amin, S., and Leitner, M., Glutamate uptake disguises neurotoxic potency of glutamate agonists in dissociated cell culture. J. Neurosci.12 (1992) 56–61.
Rothman, S. M., Thruston, J. H., and Hauhart, R. E., Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience22 (1987) 471–480.
Sharp, F. R., Lowenstein, D., Simon, R. P., and Hisanga, K., Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J. Cerebr. Blood Flow Metab.11 (1991) 621–627.
Sherman, M. Y. U., and Goldberg, A. L., Involvement of the chaperonin dnaK in the rapid degraduation of a mutant protein in Escherichia coli. EMBO J11 (1992) 71–77.
Shimosaka, S., So, Y. T., and Simon, R. P., Distribution of HSP72 induction and neuronal death following limbic seizures. Neurosci. Lett138 (1992) 202–206.
Siman, R., and Noszek, J. C., Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron1 (1988) 279–287.
Simon, R., Cho, J., Gwinn, R., and Lowenstein, D., The temporal profile of 72kd heat shock protein expression following global ischemia. J. Neurosci.11 (1991) 881–889.
Simon, R. P., Niiro, M., and Gwinn, R., Prior ischemic stress protects against experimental stroke. Neurosci. Lett.163 (1993) 135–137.
Sloviter, R. S., and Lowenstein, D. H., Heat shock expression in vulnerable cells of the rat hippocampus as an indicator of excitation-induced neuronal stress. J. Neurosci.12 (1992) 3004–3009.
Sorger, P. K., and Pelham, H. R., Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell54 (1988) 855–864.
Stevenson, M. A., and Calderwood, S. K., Members of the 70kDa heat shock protein family contain a highly conserved calmodulin-binding domain. Molec. cell. Biol.10 (1990) 1234–1238.
Ting, L. P., Tu, C. L., and Chou, C. K., Insulin-induced expression of human heat-shock protein gene hsp70. J. biol. Chem.264 (1989) 3404–3408.
Tymianski, M., Wallace, M. C., Spigleman, I., Uno, M., Carlen, P. L., Tator, C. H., and Charlton, M. P., Cell-permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron11 (1993) 221–235.
Tytell, M., Greenberg, S., and Lasek, R., Heat shock-like protein is transferred from glia to axon. Brain Res.363 (1986) 161–164.
Vass, K., Berger, M. L., Nowak, T. S., Welch, W. J., and Lassman, H., Induction of stress protein HSP70 in nerve cells after status epilepticus in the rat. Neurosci. Lett.100 (1989) 259–264.
Wang, Z. H., Vidair, C. A., and Dewey, W. C., Maintenance of intracellular free Ca++ homeostasis following lethalheat shock. Radiat. Res.128 (1991) 104–107.
Welch, W. J., and Suhan, J. P., Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell Biol.103 (1986) 2035–2052.
Wertheimer, E. S., Cerasi, E., and Ben-Neriah, Y., The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc. natl Acad. Sci. USA88 (1991) 2525–2529.
Whatley, S. A., Leung, T., Hall, C., and Lin, L., The brain 68-kilodalton microtubule-associated protein is a cognate form of the 70-kilodalton mammalian heat-shock protein and is present as a specific isoform in synaptosomal membranes. J. Neurochem.47 (1986) 1576–1583.
Wu, C., Wilson, S., Walker, B., Dawid, I., Paisley, T., Zimarino, V., and Ueda, H., Purification and properties of drosophilia heat shock activator protein. Science238 (1987) 1247–1253.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Koroshetz, W.J., Bonventre, J.V. Heat shock response in the central nervous system. Experientia 50, 1085–1091 (1994). https://doi.org/10.1007/BF01923465
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01923465