, Volume 50, Issue 11–12, pp 1061–1066 | Cite as

Hsp70: a carrier molecule with built-in adjuvanticity

  • G. Del Giudice
Multi-Author Reviews


One problem associated with the development of subunit vaccines is their limited immunogenicity, due to their physico-chemical structure, their inability to encounter the correct MHC restriction element, or the need for strong adjuvants to be delivered along with them. These problems are usually solved by conjugating target epitopes (peptides or oligosaccharides) with carrier proteins which provide a source of T-cell epitopes recognised by a large proportion of the vaccinated individuals. We have shown that mycobacterial hsp65 and hsp70 exert a strong helper effect in vivo when conjugated to synthetic peptides or oligosaccharides. Interestingly, this helper effect did not require the need for any adjuvant, either in mice or in monkeys. The helper effect mediated by the hsp65 required that animals were previously primed with either live BCG or the hsp65 alone; on the other hand, such a priming was not required when the hsp70 was used in the conjugates. Similar results were obtained with HSP molecules fromEscherichia coli. This may suggest that the adjuvant-free helper effect observed applies not only to mycobacterial HSP, but also to HSP from other prokaryotes. These findings suggest that microbial hsp70 could be considered for the design of conjugated vaccine constructs for eventual human use.

Key words

Heat shock proteins mycobacteria vaccines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, E., Britton, W. J., Morgan, A., Goodsall, A. L., and Basten, A., Identification of human T cell epitopes in theMycobacterium leprae heat shock protein 70-kD antigen. Clin. expl Immun.94 (1993) 500–506.Google Scholar
  2. 2.
    Barrios, C., Lussow, A. R., van Embden, J., van der Zee, R., Rappuoli, R., Costantino, P., Louis, J. A., Lambert, P.-H., and Del Giudice, G., Mycobacterial heat shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat shock protein as a carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette-Guérin priming. Eur. J. Immun.22 (1992) 1365–1372.Google Scholar
  3. 2a.
    Barrios, C., Georgopoulos, C., Lambert, P.-H., and Del Giudice, G., Heat shock proteins as carrier molecules: in vivo helper effect mediated byEscherichia coli GroEL and Dnak proteins requires cross-linking with antigen. Clin. expl Immun.98 (1994), in press.Google Scholar
  4. 2b.
    Barrios, C., Tougne, C., Polla, B. S., Lambert, P.-H., and Del Giudice, G., Specificity of antibodies induced after immunisation of mice with the mycobacterial heat shock protein of 65kD. Clin. expl Immun.98 (1994), in press.Google Scholar
  5. 3.
    Beagley, K. W., Fujihashi, K., Black, C. A., Lagoo, A. S., Yamamoto, M., McGhee, J. R., and Kiyono, H., TheMycobacterium tuberculosis 71-kDa heat-shock protein induces proliferation and cytokine secretion by murine gut intrepithelial lymphocytes. Eur. J. Immun.23 (1993) 2049–2052.Google Scholar
  6. 4.
    Brett, S. J., Lamb, J., Cox, J., Rothbard, J., Mehlert, A., and Ivanyi, J., Differential pattern of T cell recognition of the 65-kDa mycobacterial antigen following immunisation with the whole protein of peptides. Eur. J. Immun.19 (1989) 1303–1310.Google Scholar
  7. 5.
    Buchmeier, N. A., and Heffron, F., Induction ofSalmonella stress proteins upon infection of macrophages. Science248 (1990) 730–732.PubMedGoogle Scholar
  8. 6.
    Del Giudice, G., New carriers and adjuvants in the development of vaccines. Curr. Opin. Immun.4 (1992) 454–459.Google Scholar
  9. 7.
    Del Giudice, G., Cooper, J. A., Merino, J., Verdini, A. S., Pessi, A., Togna, A. R., Engers, H. D., Corradin, G., and Lambert, P.-H., The antibody response in mice to carrier-free synthetic polymers ofPlasmodium falciparum circumsporozoite repetitive epitope is I-Ab restricted: possible implications for malaria vaccines. J. Immun.137 (1986) 2952–2955.PubMedGoogle Scholar
  10. 8.
    Del Giudice, G., Gervaix, A., Costantino, P., Wyler, C.-A., Tougne, C., de Graeff-Meeder, E. R., van Embden, J., van der Zee, R., Nencioni, L., Rappuoli, R., Suter, S., and Lambert, P.-H., Priming to heat shock proteins in infants vaccinated against pertussis. J. Immun.150 (1993) 2025–2032.PubMedGoogle Scholar
  11. 9.
    Feige U., and Cohen, I. R., The 65-kDa heat shock protein in the pathogenesis, prevention and therapy of autoimmune arthritis and diabetes mellitus in rats and mice. Springer Semin. Immunopath.13 (1991) 99–113.Google Scholar
  12. 10.
    Frommel, D., and Lagrange, P., BCG: a modifier of immune responses to parasites. Parasitol. Today5 (1989) 188–190.PubMedGoogle Scholar
  13. 11.
    Garraud, O., Perraut, R., Blanchard, D., Chouteau, P., Bourreau, E., Le Scanf, C., Bonnemains, B., and Michel, J. C., Squirrel monkey (Saimiri sciureus) B lymphocytes: secretion of IgG directed toPlasmodium falciparum antigens, by primed blood B lymphocytes restimulated in vitro with parasitized red blood cells. Res. Immun.144 (1993) 407–418.Google Scholar
  14. 12.
    Garsia, R. J., Hellqvist, L., Booth, R. J., Radford, A. J., Britton, W. J., Astbury, L., Trent, R. J., and Basten, A., Homology of the 70-kilodalton antigens ofMycobacterium leprae andMycobacterium bovis with theMycobacterium tuberculosis 71-kilodalton antigen and with the conserved heat shock protein 70 of eucaryotes. Infection and Immunity57 (1989) 204–212.PubMedGoogle Scholar
  15. 13.
    Gupta, R. K., and Relyveld, E. H., Adverse reactions after injections of adsorbed diphtheria-pertussis-tetanus (DPT) vaccines are not only due to pertussis organisms or pertussis components in the vaccine. Vaccine9 (1991) 699–702.PubMedGoogle Scholar
  16. 14.
    Hartl, F.-U., Hlodan, R., and Langer, T., Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends in Biochemical Sciences19 (1994) 20–25.PubMedGoogle Scholar
  17. 15.
    Jindal, S., Dudani, A. K., Singh, B., Harley, C. B., and Gupta, R. S., Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Molec. cell. Biol.9 (1989) 2279–2283.PubMedGoogle Scholar
  18. 16.
    Jones, D. B., Coulson, A. F. W., and Duff, G. W., Sequence homologies between hsp60 and autoantigens. Immun. Today14 (1993) 115–118.PubMedGoogle Scholar
  19. 17.
    Kaufmann, S. H. E., Väth, U., Thole, J. E. R., van Embden, J. D. A., and Emmerich, F., Enumeration of T cells reactive withMycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64 kilodalton protein. Eur. J. Immun.17 (1987) 351–357.Google Scholar
  20. 18.
    Kaufmann, S., Schoel, B., Wand-Württenberger, A., Steinhoff, U., Munk, M., and Koga, T., T cells, stress proteins, and pathogenesis of mycobacterial infections. Curr. Topics Microbiol. Immun.155 (1990) 125–141.Google Scholar
  21. 19.
    Lachmann, P. J., Purified protein derivative (PPD). Springer Sem. Immunopath.10 (1988) 279–300.Google Scholar
  22. 20.
    Lachmann, P. J., Strangeways, L., Vyakarmam, A., and Evans, G., Raising antibodies by coupling peptides to PPD and immunizing BCG-sensitized animals. Ciba Found. Symp.119 (1986) 25–57.PubMedGoogle Scholar
  23. 21.
    Lamb, F. I., Singh, N. B., and Colston, M. J., The specific 18-kilodalton antigen ofMycobacterium leprae is present inMycobacterium habana and functions as a heat-shock protein. J. Immun.144 (1990) 1922–1925.PubMedGoogle Scholar
  24. 22.
    Lanzavecchia, A., Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. A. Rev. Immun.8 (1990) 773–793.Google Scholar
  25. 23.
    Lindquist, S., and Craig, E., The heat shock proteins. A. Rev. Genet.22 (1988) 631–677.Google Scholar
  26. 24.
    Lopez-Guerrero, J. A., Lopez-Bote, J. P., Ortiz, M. A., Gupta, R. S., Paez, E., and Bernabeu, C., Modulation of adjuvant arthritis in Lewis rats by recombinant vaccinia virus expressing the human 60-kilodalton heat shock protein. Infect. Immun.61 (1993) 4225–4231.PubMedGoogle Scholar
  27. 25.
    Lussow, A. R., Barrios, C., van Embden, J., van der Zee, R., Verdini, A. S., Pessi, A., Louis, J. A., Lambert, P.-H., and Del Giudice, G., Mycobacterial heat shock proteins as carrier molecules. Eur. J. Immun.21 (1991) 2297–2302.Google Scholar
  28. 26.
    Lussow, A. R., Del Giudice, G., Renia, L., Mazier, D., Verhave, J. P., Verdini, A. S., Pessi, A., Louis, J. A., and Lambert, P.-H., Use of tuberculin purified protein derivative-Asn-Ala-Asn-Pro conjugate in bacillus Calmette-Guérin primed mice overcomes H-2 restriction of the antibody response and avoids the need for adjuvants. Proc. natl Acad. Sci. USA87 (1990) 2960–2964.PubMedGoogle Scholar
  29. 27.
    Mazier, D., and Mattei, D., Parasite heat shock proteins and host responses: the balance between protection and immunopathology. Springer Sem. Immunopath.13 (1991) 37–53.Google Scholar
  30. 28.
    Mehlert, A., and Young, D. B., Biochemical and antigenic characterization of theMycobacterium tuberculosis 71 kD antigen, a member of the 70 kD heat shock protein family. Molec. Microbiol.3 (1989) 125–130.Google Scholar
  31. 29.
    Munk, M. E., Schoel, B., and Kaufmann, S. H. E., T cell responses in normal individuals towards recombinant antigens ofMycobacterium tuberculosis Eur. J. Immun.18 (1988) 1835–1838.Google Scholar
  32. 30.
    Munk, M. E., Schoel, B., Modrow, S., Karr, R. W., Young, R. A., and Kaufmann, S. H. E., Cytolytic T lymphocytes from healthy individuals with specificity to self epitopes shared by mycobacterial and human 65-kDa heat shock protein. J. Immun.143 (1989) 2844–2849.PubMedGoogle Scholar
  33. 31.
    Mustafa, A. S., Lundin, K. E., and Oftung, F., Human T cells recognize mycobacterial heat shock proteins in the context of multiple HLA-DR molecules: studies with healthy subjects vaccinated withMycobacterium bovis BCG andMycobacterium leprae. Infection and Immunity61 (1993) 5294–5301.PubMedGoogle Scholar
  34. 32.
    Perraut, R., Lussow, A. R., Gavoille, S., Garraud, O., Matile, H., Tougne, C., van Embden, J., van der Zee, R., Lambert, P.-H., Gysin, J., and Del Giudice, G., Successful primate immunization with peptides conjugated to purified protein derivative or mycobacterial heat shock proteins in the absence of adjuvants. Clin. expl Immun.93 (1993) 382–386.Google Scholar
  35. 33.
    Podda, A., Carapella De Luca, E., Titone, L., Casadei, A. M., Cascio, A., Peppoloni, S., Volpini, G., Marsili, I., Nencioni, L., and Rappuoli, R., Acellular pertussis vaccine composed of genetically inactivated pertussis toxin: safety and immunogenicity in 12–24 and 2–4 months old children. J. Pediat.120 (1992) 680–685.PubMedGoogle Scholar
  36. 34.
    Res, P., Thole, J., and de Vries, R., Heat shock proteins and autoimmunity in humans. Springer Sem. Immunopath.13 (1991) 81–98.Google Scholar
  37. 35.
    Romero, P., Malaria vaccines. Curr. Opin. Immun.4 (1992) 432–441.Google Scholar
  38. 36.
    Thole, J. E., Dauwerse, H. G., Das, P. K., Groothuis, D. G., Schouls, L. M., and van Embden, J. D., Cloning ofMycobacterium bovis BCG DNA and expression of antigens inEscherichia coli. Infection and Immunity50 (1985) 800–806.PubMedGoogle Scholar
  39. 37.
    Thole, J. E., van Schooten, W. C., Keulen, W. J., Hermans, P. W., Janson, A. A., Vries, R. R., Kolk, A. H., and Van Embden, J. D., Use of recombinant antigens expressed inEscherichia coli K-12 to map B-cell and T-cell epitopes on the immunodominant 65-kilodalton protein ofMycobacterium bovis BCG. Infection and Immunity56 (1987) 1633–1640.Google Scholar
  40. 38.
    Togna, A. R., Del Giudice, G., Verdini, A. S., Bonelli F., Pessi, A., Engers, H. D., and Corradin, G., SyntheticPlasmodium falciparum circumsporozoite peptides elicit heterogeneous L3T4+ T cell proliferative responses in H-2b mice. J. Immun.137 (1986) 2956–2960.PubMedGoogle Scholar
  41. 39.
    Venner, T. J., and Gupta, R. S., Nucleotide sequence of mouse HSP60 (chaperonin, GroEL homolog) cDNA. Biochim. biophys. Acta1087 (1990) 336–338.PubMedGoogle Scholar
  42. 40.
    Young, D. B., Mehlert, A., and Smith, D. F., Stress proteins and infectious diseases, in: Stress Proteins in Biology and Medicine, pp. 131–165. Eds R. I. Morimoto, A. Tissières, and C. Georgopoulos, Cold Springer harbor Laboratory, Cold Spring Harbor, NY 1990.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • G. Del Giudice
    • 1
    • 2
  1. 1.World Health Organisation-Immunology Research and Training Centre, Department of PathologyUniversity of GenevaGeneva 4Switzerland
  2. 2.Institute of BiochemistryUniversity of LausanneEpalingesSwitzerland

Personalised recommendations