Skip to main content
Log in

Hsp70 in mitochondrial biogenesis: From chaperoning nascent polypeptide chains to facilitation of protein degradation

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ang, D., Liberek, K., Skowyra, D., Zylicz, M., and Georgopoulos, C., Biological role and regulation of the universally conserved heat shock proteins. J. biol. Chem.266 (1991) 24233–24236.

    Article  CAS  PubMed  Google Scholar 

  2. Atencio, D.P., and Yaffe, M.P., Mas5, a yeast homolog of DnaJ involved in mitochondrial protein import. Molec. cell. Biol.12 (1992) 283–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Beckman, R.P., Mizzen, L., and Welch, W., Interaction of hsp70 with newly synthesized proteins: Implications for protein folding and assembly. Science248 (1990) 850–856.

    Article  Google Scholar 

  4. Borst, P., and Grivell, L.A., The mitochondrial genome of yeast. Cell15 (1978) 705–723.

    Article  CAS  PubMed  Google Scholar 

  5. Caplan, A.J., and Douglas, M.G., Characterization of YDJ1: A yeast homolog of theE. coli dnaJ gene. J. Cell Biol.114 (1991) 609–622.

    Article  CAS  PubMed  Google Scholar 

  6. Caplan, A.J., Cyr, D.M., and Douglas, M.G., YDJ1 facilitates polypeptide translocation across different intercellular membranes by a conserved mechanism. Cell71 (1992) 1143–1155.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, M.Y., Hartl, F.-U., Martin, J., Pollock, R.A., Kalusek, F., Neupert, W., Hallberg, E.M., Hallberg, R.L., and Horwich, A.L., Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature337 (1989) 620–625.

    Article  CAS  PubMed  Google Scholar 

  8. Chirico, W.J., Dissociation of complexes between 70 Kda stress proteins and presecretory proteins is facilitated by a cytosolic factor. Biochem. biophys. Res. Commun.189 (1992) 1150–1156.

    Article  CAS  PubMed  Google Scholar 

  9. Craig, E.A., Baxter, B.K., Becker, J., Halladay, J., and Zeigelhoffer, T., Cytosolic hsp70s ofSaccharomyces cerevisiae: Roles in protein synthesis, protein translocation, proteolysis and regulation, in: The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 31–52. Eds R.I. Morimoto, A. Tissieres and C. Georgopoulos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994.

    Google Scholar 

  10. Craig, E.A., Kramer, S., Shilling, J., Werner-Washburne, M., Holmes, S., Kosic-Smither, J., and Nicolet, C.M., SSCl, an essential member of theS. cerevisiae HSP70 multigene family, encodes a mitochondrial protein. Molec. cell. Biol.9 (1989) 3000–3008.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cyr, D.M., and Douglas, M.G., Differential regulation of hsp70 subfamilies by the eukaryotic DnaJ homolog YDJ1. J. biol. Chem.269 (1994) 9798–9804.

    Article  CAS  PubMed  Google Scholar 

  12. Cyr, D.M., Lu, X., and Douglas, M.G., Regulation of eukaryotic hsp70 function by a DnaJ homolog. J. biol. Chem.267 (1992) 20927–20931.

    Article  CAS  PubMed  Google Scholar 

  13. Cyr, D.M., Langer, T., and Douglas, D.M., DnaJ-like proteins: molecular chaperones and specific regulators of hsp70. Trends biochem. Sci.19 (1994) 176–181.

    Article  CAS  PubMed  Google Scholar 

  14. Cyr, D.M., Stuart, R.A., and Neupert, W., A matrix ATP requirement for presequence translocation across the inner membrane of mitochondria. J. biol. Chem.268 (1993) 23751–23754.

    Article  CAS  PubMed  Google Scholar 

  15. Deshaies, R.B., Koch, B., Werner-Washburne, M., Craig, E.A., and Schekman, R., A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides, Nature332 (1988) 800–805.

    Article  CAS  PubMed  Google Scholar 

  16. Dice, J.F., Agarraberes, F., Kirven-Brooks, M., Terlecky, L.J., and Terlecky, S.R., Heat shock 70-Kd proteins and lysosomal proteolysis, in: The Biology of Heat Shock Proteins and Molecular Chaperones, pp. 137–152. Eds R.I. Morimoto, A. Tissieres and C. Georgopoulos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994.

    Google Scholar 

  17. Eilers, M., and Schatz, G., Binding of a specific ligand inhibits import of a purified precursor protein into mitocondria. Nature322 (1986) 228–232.

    Article  CAS  PubMed  Google Scholar 

  18. Gambill, B.D., Voos, W., Kang, P.J., Miao, B., Langer, T., Craig, E.A., and Pfanner, N., A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol.123 (1993) 119–126.

    Article  PubMed  Google Scholar 

  19. Gething, M.-J., and Sambrook, J., Protein folding in the cell. Nature355 (1992) 33–45.

    Article  CAS  PubMed  Google Scholar 

  20. Glick, B.S., Wachter, C., Reid, G.A., and Schatz, G., Import of cytochromeb 2 to the mitochondrial imtermembrane space—the tightly folded heme-binding domain makes import dependent upon matrix ATP. Protein Sci.2 (1993) 1901–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Groot, G.S.P., Mason, T.L., and van Harten-Loosbroek, N., Varl is associated with the small ribosomal subunit of mitochondrial ribosomes in yeast. Molec. gen. Genet.174 (1979) 339–342.

    Article  CAS  PubMed  Google Scholar 

  22. Hadikusumo, R.G., Meltzer, S., Choo, W.M., Jean-François, M.J., Linnane, A.W., and Marzuki, S., The definition of mitochondrial H+ATPase assembly defects in mit-mutants ofSaccaromyces cerevisiae with a monoclonal antibody to the enzyme complex as an assembly probe. Biochim. biophys. Acta933 (1988) 212–222.

    Article  CAS  PubMed  Google Scholar 

  23. Hartl, F.-U., Holdan, R., and Langer, T., Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends biochem. Sci.19 (1994) 20–25.

    Article  CAS  PubMed  Google Scholar 

  24. Hermann, J., Stuart, R.A., Craig, E.A., and Neupert, W., Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol.127 (1994), in press.

  25. Höhfeld, J., and Hartl, F.-U., Requirement of the chaperonin cofactor Hsp10 for protein sorting in yeast mitochondria. J. Cell Biol. (1994), in press.

  26. Hendrick, J.P., and Hartl, F.-U., Molecular chaperone functions of heat shock proteins. A. Rev. Biochem.62 (1993) 349–384.

    Article  CAS  Google Scholar 

  27. Hwang, S.T., and Schatz, G., Translocation of proteins across the mitochondrial inner membrane, but not into the outer membrane, requires nucleoside triphosphates in the matrix. Proc. natl Acad. Sci. USA86 (1989) 8432–8436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikeda, E., Yoshida, S., Mitsuzawa, H., Uno, I., and Toh-e, A., YGE1 is a yeast homologue ofEscherichia coli grpE and is required for maintenance of mitochondrial functions. FEBS Lett.39 (1994) 265–268.

    Article  Google Scholar 

  29. Kang, P.-J., Ostermann, J., Shilling, J., Neupert, W., Craig, E.A., and Pfanner, N., Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, Lond.348 (1990) 137–143.

    Article  CAS  PubMed  Google Scholar 

  30. Kiebler, M., Becker, K., Pfanner, N., and Neupert, W., Mitochondrial protein import: specific recognition and membrane translocation of preproteins. J. Membrane Biol.135 (1993) 191–207.

    Article  CAS  Google Scholar 

  31. Kutejová, E., Durcová, G., Surofková, E., and Kuzela, S., Yeast mitochondrial ATP-dependent protease: purification and comparison with the homologous rat enzyme and the bacterial ATP-dependent protease La. FEBS Lett.329 (1993) 47–50.

    Article  PubMed  Google Scholar 

  32. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K., and Hartl, F.-U., Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, Lond.356 (1992) 683–689.

    Article  CAS  PubMed  Google Scholar 

  33. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C., and Zylicz, M.,Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. natl Acad. Sci. USA88 (1991) 2874–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindquist, S., and Craig, E.A., The heat shock proteins. A. Rev. Genet.22 (1988) 631–677.

    Article  CAS  Google Scholar 

  35. Manning-Krieg, U.C., Scherer, P.E., and Schatz, G., Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J.10 (1991) 3273–3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nelson, R.J., Zeigelhoffer, T., Nicolet, C., Werner-Washburne, M., and Craig, E.A., The translation machinery and seventy kilodalton heat shock protein cooperate in protein synthesis. Cell71 (1992) 97–105.

    Article  CAS  PubMed  Google Scholar 

  37. Neupert, W., Hartl, F.-U., Craig, E.A., and Pfanner, N., How do polypeptides cross mitochondrial membranes? Cell63 (1990) 447–450.

    Article  CAS  PubMed  Google Scholar 

  38. Ostermann, J., Horwich, A.L., Neupert, W., and Hartl, F.-U., Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature341 (1989) 125–130.

    Article  CAS  PubMed  Google Scholar 

  39. Pelham, H.R.B., Speculations on the function of major heat shock and glucose-regulated proteins. Cell46 (1986) 959–961.

    Article  CAS  PubMed  Google Scholar 

  40. Rassow, J., Hartl, F.-U., Guiard, B., Pfanner, N., and Neupert, W., Polypetides traverse the mitochondrial envelope in an extended state. FEBS Lett.275 (1990) 190–194.

    Article  CAS  PubMed  Google Scholar 

  41. Rospert, S., Junne, T., Glick, B.S., and Schatz, G., Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog ofE. coli groES. FEBS Lett.335 (1993) 358–360.

    Article  CAS  PubMed  Google Scholar 

  42. Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barrel, B., and Neupert, W., Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding, Cell77 (1994) 249–259.

    Article  CAS  PubMed  Google Scholar 

  43. Schleyer, M., and Neupert, W., Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes. Cell43 (1985) 339–350.

    Article  CAS  PubMed  Google Scholar 

  44. Stuart, R.A., Gruhler, A., van der Klei, I.J., Guiard, B., Koll, H., and Neupert, W., The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space. Eur. J. Biochem.220 (1994a) 9–18.

    Article  CAS  PubMed  Google Scholar 

  45. Stuart, R.A., Cyr, D.M., Craig, E.A., and Neupert, W., Mitochondrial molecular chaperones: their role in protein translocation. Trends biochem. Sci.19 (1994) 87–92.

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki, C.K., Suda, K., Wang, N., and Schatz, G., Requirement of the yeast gene LON in mitochondrial proteolysis and maintenance of respiration. Science264 (1994) 273–276.

    Article  CAS  PubMed  Google Scholar 

  47. Terpstra, P., and Butow, R.A., The role of varl in the assembly of yeast mitochondrial ribosomes. J. Biochem. Biophys.254 (1979) 12662–12669.

    CAS  Google Scholar 

  48. Tzagoloff, A., and Myers, A.M., Genetics of mitochondrial biogenesis. A. Rev. Biochem.55 (1986) 249–285.

    Article  CAS  Google Scholar 

  49. Tzagoloff, A., and Dieckmann, C.L., PET genes ofSaccharomyces cerevisiae. Microbiol. Rev.54 (1990) 211–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Dyck, L., Pearce, D.A., and Sherman, F., PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeastSaccharomyces cerevisiae. J. biol. Chem.269 (1994) 238–242.

    Article  PubMed  Google Scholar 

  51. Voos, W., Gambill, D.B., Guiard, B., Pfanner, N., and Craig, E.A., Presequence and mature portion of preproteins strongly influence the dependence of mitochondrial protein import on the heat shock 70 protein in the matrix. J. Cell Biol.123 (1993) 109–118.

    Article  PubMed  Google Scholar 

  52. Wang, N., Gottesman, S., Willingham, M.C., Gottesman, M.M., and Maruizi, M.R., A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. natl Acad. Sci. USA90 (1993) 11247–11251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wachter, C., Schatz, G., and Glick, B.S., Protein import into mitochondria: the requirement for external ATP is precursorspecific whereas intramitochondrial ATP is universally needed for translocation into the matrix. Molec. cell. Biol.5 (1994) in press.

  54. Wagner, I., Arlt, H., van Dyck, L., Langer, T., and Neupert, W., Molecular chaperones co-operate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J.13 (1994), in press.

  55. Xia, Z., and Mathews, F.S., Molecular structure of flavocytochrome b2 at 2.4 A resolution. J. molec. Biol.212 (1990) 837–863.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a long-term fellowship from the Human Frontier Science Program Organization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuart, R.A., Cyr, D.M. & Neupert, W. Hsp70 in mitochondrial biogenesis: From chaperoning nascent polypeptide chains to facilitation of protein degradation. Experientia 50, 1002–1011 (1994). https://doi.org/10.1007/BF01923454

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923454

Key words

Navigation