Skip to main content
Log in

Regulation of sodium and body fluid homeostasis during development: Implications for the pathogenesis of hypertension

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The spontaneously hypertensive rat (SHR) is an important animal model of human essential hypertension. During the first month of life, increased retention of sodium is present in the SHR which appears to be mediated by the renin-angiotensin system. The present review will discuss the role that increased activity of the renin-angiotensin system plays in sodium/body fluid regulation during early development. It is hypothesized that disordered regulation of sodium/body fluid homeostasis during this stage leads to pathological cardiovascular regulation in adulthood. Through an understanding of the relationship between sodium/body fluid balance in the young and cardiovascular function in the adult insights may be gained into both the pathological state of hypertension and the critical role played by early development in shaping homeostatic mechanisms in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beierwaltes, W. H., Arendshorst, W. J., and Klemmer, P. J., Electrolyte and water balance in young spontaneously hypertensive rats. Hypertension4 (1982) 908–915.

    PubMed  Google Scholar 

  2. Black, I. B., Stages of neurotransmitter development in autonomic neurons. Science215 (1982) 1198–1204.

    Google Scholar 

  3. Blizard, D. A., and Adams, N., Maternal influences on cardiovascular pathophysiology. Experientia48 (1992) 334–345.

    PubMed  Google Scholar 

  4. Brody, M. J., and Zimmerman, B. G., Peripheral circulation in arterial hypertension. Prog. cardiovasc. Dis.18 (1976) 323–340.

    PubMed  Google Scholar 

  5. Cierpial, M. A., and McCarty, R., Hypertension in SHR rats; contribution of maternal environment. Am. J. Physiol.253 (1987) H980–H984.

    PubMed  Google Scholar 

  6. Contreras, R. J., and Kosten, T., Prenatal and early postnatal sodium chloride intake modifies the solution preferences of adult rats. J. Nutrit.113 (1983) 1051–1062.

    PubMed  Google Scholar 

  7. Contreras, R. J., Differences in perinatal NaCl exposure alters blood pressure levels of adult rats. Am. J. Physiol.256 (1989) R70–R77.

    PubMed  Google Scholar 

  8. DiBona, G. F., The functions of the renal nerves. J. Physiol. Biochem. Pharmac.94 (1982) 76–181.

    Google Scholar 

  9. DiBona, G. F., Neural regulation of renal tubular sodium reabsorption and renin secretion: Integrative aspects. Clin. exp. Hypertens. Theory PracticeA 9 (1987) 151–165.

    Google Scholar 

  10. DNicolantonio, R., Marshall, S. J., Nicolaci, J. A., and Doyle, A. E., Blood pressure and saline preference of cross-suckled genetically hypertensive and normotensive rats: Role of milk electrolytes. J. Hypertens.4 (1986) S253–S254.

    Google Scholar 

  11. Gattone, V. H., Evan, A. P., Overhage, J. M., and Severs, W. B., Developing renal innervation in the spontaneously hypertensive rat: evidence for a role of the sympathetic nervous system in renal damage. J. Hypertens.8 (1990) 423–428.

    PubMed  Google Scholar 

  12. Gomez, R. A., Lynch, K. R., Chevalier, R. L., Wilfong, N., Everett, A., Carey, R. M., and Peach, M. J., Renin and angiotensinogen gene expression in maturing rat kidney. Am. J. Physiol.254 (1988) F582–F587.

    PubMed  Google Scholar 

  13. Guyton, A. C., Coleman, T. G., Cowley, A. W. Jr., Manning, R. D., Norman, R. A. Jr., and Ferguson, J. D., A systems analysis approach to understanding long-range arterial blood pressure control and hypertension. Circ. Res.35 (1974) 159–176.

    Google Scholar 

  14. Hall, W. G., Weaning and growth of artificially reared rats. Science190 (1975) 1313–1315.

    PubMed  Google Scholar 

  15. Harrap, S. B., and Doyle, A. E., Renal haemodynamics and total body sodium in immature spontaneously hypertensive and Wistar-Kyoto rats. J. Hypertens.4 (1986) S249–S252.

    Google Scholar 

  16. Johnson, A. K., Brain mechanisms in the control of body fluid homeostasis, in: Perspectives in Exercise Science and Sports Medicine, vol. 3: Fluid Homeostasis During Exercise. pp. 347–419. Eds C. V. Gisolfi and D. R. Lamb. Benchmark Press, Indianapolis 1990.

    Google Scholar 

  17. Kirby, R. F., and Johnson, A. K., Effects of sympathetic activation on plasma renin activity in the developing rat. J. Pharmac. exp. Ther.253 (1990) 152–157.

    Google Scholar 

  18. Kirby, R. F., and McCarty, R., Ontogeny of functional sympathetic innervation to the heart and adrenal medulla in the preweaning rat. J. auton. Nerv. Syst.19 (1987) 67–75.

    PubMed  Google Scholar 

  19. Kirby, R. F., Page, W. V., Cutshall, S., Porter, G. C., and Robillard, J. E., Effects of dietary salt manipulation on kidney renin gene expression in artificially reared newborn SHR and WKY rats. Soc. Pediat. Res. Abstracts, 1991.

  20. Langer, S. Z., Presynaptic regulation of the release of catecholamines. Pharmac. Rev.32 (1981) 337–362.

    Google Scholar 

  21. Matsushima, Y., Kawamura, M., Akabane, S., Imanishi, M., Kuramochi, M., Ito, K., and Omae, T., Increases in renal angiotensin II content and tubular angiotensin II receptors in prehypertensive spontaneously hypertensive rats. J. Hypertens.6 (1988) 791–796.

    PubMed  Google Scholar 

  22. McCarty, R., Cierpial, M. A., Murphy, C. A., Lee, J. H., and Fields-Okotcha, C., Maternal involvement in the development of cardiovascular phenotype. Experientia48 (1992) 315–322.

    PubMed  Google Scholar 

  23. McCarty, R., Kirby, R. F., Cierpial, M. A., and Jenal, T. J., Accelerated development of cardiac sympathetic responses in spontaneously hypertensive (SHR) rats. Behav. Neural Biol.48 (1987) 321–333.

    PubMed  Google Scholar 

  24. McCarty, R., Cierpial, M. A., Kirby, R. F., and Jenal, T. J., Development of cardiac sympathetic and adrenal-medullary responses in borderline hypertensive rats. J. auton. Nerv. Syst.21 (1987) 43–49.

    PubMed  Google Scholar 

  25. McMurty, J. P., Wright, G. L., and Wexler, B. C., Spontaneous hypertension in cross-suckled rats. Science211 (1981) 1173–1175.

    PubMed  Google Scholar 

  26. Messer, M., Thoman, E. B., Terrasa, A. B., and Dallman, P. R., Artificial feeding of infant rats by continuous gastric infusion. J. Nutrit.98 (1969) 404–410.

    PubMed  Google Scholar 

  27. Moe, K. E., The salt intake of rat dams influences the salt intake and brain angiotensin receptors of their adult offspring. Neurosci. Abstr. (1987) 1169.

  28. Mouw, D. R., Vander, A. J., and Wagner, J., Effects of prenatal and early postnatal sodium deprivation on subsequent adult thirst and salt preference in rats. Am. J. Physiol.234 (1978) F59–F63.

    PubMed  Google Scholar 

  29. Myers, M. M., and Scalzo, F. M., Blood pressure and heart rate responses of SHR and WKY rat pups during feeding. Physiol. Behav.44 (1987) 75–83.

    Google Scholar 

  30. Myers, M. M., Shair, H. N., and Hofer, M. A., Feeding in infancy: Short- and long-term effects on cardiovascular function. Experientia48 (1992) 322–333.

    PubMed  Google Scholar 

  31. Nagoaka, A., Kakihana, M., Fujiwara, K., and Shimakawa, K., Reduced ability to excrete sodium and water in young spontaneously hypertensive rats, in: Hypertensive Mechanisms, pp. 249–251. Eds W. Rascher, D. Clugh and D. Ganten. Schattauer Verlag, Stuttgart-New York 1982.

    Google Scholar 

  32. Salvi, D., Brady, R., Thomas, D., and Lau, K., Evidence for increased renal Na retention by pre-hypertensive spontaneously hypertensive rats (SHR): Role of mineralocorticoids. Clin. Res.33 (1985) 883A.

    Google Scholar 

  33. Sinaiko, A., and Mirkin, B. L., Ontogenesis of the renin-angiotensin system in spontaneously hypertensive and normal Wistar rats. Circ. Res.34 (1974) 693–696.

    PubMed  Google Scholar 

  34. Slotkin, T. A., Whitmore, W. L., Orband-Miller, L., Queen, K. L., and Haim, K., Beta adrenergic control of macromolecule synthesis in neonatal rat heart, kidney, and lung: relationship to sympathetic neuronal development. J. Pharmac. exp. Ther.243 (1987) 101–109.

    Google Scholar 

  35. Smith, P. G., Poston, C. W., and Mills, E., Ontogeny of neural and non-neural contributions to arterial blood pressure in spontaneously hypertensive rats. Hypertension6 (1984) 54–60.

    PubMed  Google Scholar 

  36. Sripanidkulchai, B., and Wyss, J. M., The development of alpha-2 adrenoceptors in the rat kidney: Correlation with noradrenergic innervation. Brain Res.400 (1987) 91–100.

    PubMed  Google Scholar 

  37. Tucker, D. C., Bhatnagar, R. K., and Johnson, A. K., Genetic and environmental influences on developing autonomic control of heart rate. Am. J. Physiol.246 (1984) R578–R586.

    PubMed  Google Scholar 

  38. Tucker, D. C., and Johnson, A. K., Development of autonomic control of heart rate in genetically hypertensive and normotensive rats. Am. J. Physiol.246 (1984) R570–R577.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirby, R.F., Johnson, A.K. Regulation of sodium and body fluid homeostasis during development: Implications for the pathogenesis of hypertension. Experientia 48, 345–351 (1992). https://doi.org/10.1007/BF01923428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923428

Key words

Navigation