, Volume 47, Issue 8, pp 783–790 | Cite as

Non-host-selective fungal phytotoxins: Biochemical aspects of their mode of action

  • A. Ballio
Multi-author Review


During the last decade increasing attention has been directed towards the biochemical mechanisms responsible for the biological activity of phytotoxins. Studies on the mode of action of some non-host-selective phytotoxins, some following on from previous observations, have demonstrated a very specific interaction with particular components of the cell machinery, and have suggested the possible use of these phytotoxins as tools for the investigation of important biochemical processes. This review article reports and discusses results of studies carried out in the 1980s with seven non-host-selective fungal toxins: brefeldin A, cercosporin,Cercospora beticola toxin, fusicoccin, ophiobolins, tentoxin, and zinniol. Each of these interferes with the life of the host by interacting with a different biochemical target.

Key words

Non-host-selective phytotoxins brefeldin A cercosporin Cercospora beticola toxin fusicoccin ophiobolins tentoxin zinniol receptors plasma membrane endoplasmic reticulum ATPase calmodulin oxygen radicals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aducci, P., and Ballio, A., Mode of action of fusicoccin: the role of specific receptors, in: Phytotoxins and Plant Pathogenesis, pp. 143–150. Eds. A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag. Berlin 1989.Google Scholar
  2. 2.
    Aducci, P., and Marra, M., IP3 levels and their modulation by fusicoccin measured by a novel [3H]IP3 binding assay. Biochem. Biophys. Res. Commun168 (1990) 1041–1046.CrossRefPubMedGoogle Scholar
  3. 3.
    Aducci, P., Ballio, A., Blein, J.-P., Fullone, M. R., Rossignol, M., and Scalla, R., Functional reconstitution of a proton-translocating system responsive to fusicoccin. Proc. natl. Acad. Sci. USA85 1988) 7849–7851.PubMedGoogle Scholar
  4. 4.
    Aducci, P., Ballio, A., Fiorucci, L., and Simonetti, E., Inactivation of solubilized fusicoccin-binding sites by endogenous plant hydrolases. Planta160 (1984) 422–427.CrossRefGoogle Scholar
  5. 5.
    Aducci, P., Ballio, A., Fullone, M. R., and Persichetti, F., Entrapment into liposomes of fusicoccin binding sites, Plant Sci.45 (1986) 83–86.CrossRefGoogle Scholar
  6. 6.
    Aducci, P., Crosetti, G., Federico, R., and Ballio, A., Fusicoccin receptors. Evidence for endogenous ligand. Planta148 (1980) 208–210.CrossRefGoogle Scholar
  7. 7.
    Aducci, P., Federico, R., and Ballio, A., Interaction of a high molecular weight derivative of fusicoccin with plant membranes. Phytopath. Medit.19 (1980) 187–188.Google Scholar
  8. 8.
    Aducci, P., Fullone, M. R., and Ballio, A., Properties of proteoliposomes containing fusicoccin receptors from maize. Plant Physiol.91 (1989) 1402–1406.Google Scholar
  9. 9.
    Arntzen, C. J., Inhibition of photophosphorylation by tentoxin, a cyclin tetraptptide. Biochim. Biophys. Acta283 (1972) 539–542.PubMedGoogle Scholar
  10. 10.
    Assante, G., Locci, R., Camarda, L., Merlini, L., and Nasini, G., Screening of the genusCercospora for secondary metabolites. Phytochemistry16 (1977) 243–247.CrossRefGoogle Scholar
  11. 11.
    Balis, C., and Payne, M. G., Triglycerides and Cercosporin fromCercospora beticola. Fungal growth and cercosporin production. Phytopathology61 (1971) 1477–1484.Google Scholar
  12. 12.
    Ballio, A., Structure-activity relationship, in: Toxins in Plant Disease, pp. 395–441. Ed. R. D. Durbin. Academic Press, New York 1981.Google Scholar
  13. 13.
    Ballio, A., and Aducci, P., Search for endogenous ligands to fusicoccin binding sites, in: Plant Hormone Receptors, pp. 125–130. Ed. D. Klämbt. Springer-Verlag, Berlin 1987.Google Scholar
  14. 14.
    Ballio, A., Brufani, M., Casinovi, C. G., Cerrini, S., Fedeli, W., Pellicciari, R., Santurbano, B., and Vaciago, A., The structure of fusicoccin A. Experimentia24 (1968) 631–635.Google Scholar
  15. 15.
    Ballio, A., Chain, E. B., De Leo, P., Erlanger, B. F., Mauri, M., and Tonolo, A., Fusicoccin: a new wilting toxin produced byFusicoccum amygdali Del. Nature203 (1964) 297.Google Scholar
  16. 16.
    Ballio, A., De Michelis, M. I., Lado, P., and Randazzo, G., Fusicoccin structure-activity relationships: Stimulation of growth by cell enlargement and promotion of germination. Physiol. Plant.52 (1981) 471–475.Google Scholar
  17. 17.
    Ballio, A., Federico, R., Pessi, A., and Scalorbi, D., Fusicoccin binding sites in subcellular preparations of spinach leaves. Plant Sci. Lett.18 (1980) 39–44.CrossRefGoogle Scholar
  18. 18.
    Ballio, A., Federico, R., and Scalorbi, D., Fusicoccin structure-activity relationships. In vitro binding to microsomal preparations of maize coleoptiles. Physiol. Plant.52 (1981) 476–481.Google Scholar
  19. 19.
    Barasch, I., Mor, H., Netzer, D., and Kashman, Y., Production of zinniol byAltermaria dauci and its phytotoxic effect on carrot. Physiol. Plant Path.19 (1981) 7–16.Google Scholar
  20. 20.
    Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Ghislain, M., and Guern, J., Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc. natl Acad. Sci. USA86 (1989) 891–895.Google Scholar
  21. 21.
    Barrow, K. D., Barton, D. H. R., Chain, E., Ohnsorge, U. F. W., and Thomas, R., Fusicoccin. Part II. The constitution of fusicoccin. J. chem. Soc. (C) (1971) 1265–1274.Google Scholar
  22. 22.
    Blein, J.-P., Bourdil, I., Rossignol, M., and Scalla, R.,Cercospora beticola toxin inhibits vanadate-sensitive H+ transport in corn root membrane vesicles. Plant Physiol.88 (1988) 429–434.Google Scholar
  23. 23.
    Blum, W., Key, G., and Weiler, E. W., ATPase activity in plasmalemma-rich vesicles isolated by aqueous two-phase partitionning fromVicia faba mesophyll and epidermis: Characterization and influence of abscisic acid and fusicoccin. Physiol. Plant.72 (1988) 297–287.Google Scholar
  24. 24.
    Böcher, M., and Novacky, A., Effect of tentoxin on the membrane potential ofLemma gibba G1. Plant Sci. Lett.23 (1981) 269–276.CrossRefGoogle Scholar
  25. 25.
    Cavallini, L., Bindoli, A., Macri, F., and Vianello, A., Lipid peroxidation induced by cercosporin as a possible determinant of its toxicity. Chem.-biol. Interact.28 (1979) 139–146.CrossRefPubMedGoogle Scholar
  26. 26.
    Chattopadhyay, A. K., and Samaddar, K. R., Effects ofHelminthosporium oryzae infection and ophiobolin on the cell membranes of host tissues. Physiol. Plant Path.8 (1976) 131–139.Google Scholar
  27. 27.
    Cocucci, S. M., Morgutti, S., Cocucci, M., and Gianani, L., Effects of ophiobolin A on potassium permeability, transmembrane electrical potential and proton extrusion in maize roots. Plant Sci. Lett.32 (1983) 9–16.CrossRefGoogle Scholar
  28. 28.
    Cotty, P. J., Misaghi, I. J., and Hine, R. B., Production of zinniol byAlternaria tagetica and its phytotoxic effect onTagetes erecta. Phytopathology73 (1983) 1326–1328.Google Scholar
  29. 29.
    Dahse, I., Bulychev, A. A., Kurella, G. A., and Liebermann, B., Weak tentoxin effect on the electrical light response of isolated chloroplasts ofPeperomia metallica. Physiol. Plant.65 (1985) 446–450.Google Scholar
  30. 30.
    Dahse, I., Matorin, D. N., and Liebermann, B. A., A comparison of tentoxin action on the delayed fluorescence in chloroplasts of spinach,Chlorella andAnacystis. Biochem. Physiol. Pflanzen181 (1986) 137–146.Google Scholar
  31. 31.
    Dahse, I., Schnabl, H., Hampp, R., Ziegler, H., Müller, E., and Liebermann, B., Inhibition of light-induced stomatal opening and of guard-cell-protoplast swelling inVicia faba L. by tentoxin, an inhibitior of photophosphorylation. Planta173 (1988) 391–396.CrossRefGoogle Scholar
  32. 32.
    Daly, J. M., Mechanism of action, in: Toxins in Plant Disease, pp. 331–394. Ed. R. D. Durbin. Academic Press, New York 1981.Google Scholar
  33. 33.
    Daub, M. E., Cercosporin, a photosensitizing toxin fromCercospora species. Phytopathology72 (1982) 370–374.Google Scholar
  34. 34.
    Daub, M. E., Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin. Plant Physiol.69 (1982) 1361–1364.Google Scholar
  35. 35.
    Daub, M. E., and Briggs, S. P., Changes in tobacco cell membrane composition and structure caused by cercosporin. Plant Physiol.71 (1983) 763–766.Google Scholar
  36. 36.
    Daub, M. E., and Hangarter, R. P., Ligh-induced production of singlet oxygen and superoxide by the fungal toxin cercosporin. Plant Physiol.73 (1983) 855–857.Google Scholar
  37. 37.
    de Boer, A. H., Watson, B. A., and Cleland, R. E., Purification and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiol.89 (1989) 250–259.PubMedGoogle Scholar
  38. 38.
    De Michelis, M. I., Pugliarello, M. C., Olivari, C., and Rasi-Caldogno, F., On the mechanism of FC-induced activation of the plasma membrane H+-ATPase, in: Plant Membrane Transport, pp. 373–378. Eds J. Dainty, M. I. De Michelis, E. Marrè and F. Rasi-Caldogno. Elsevier, Amsterdam 1989.Google Scholar
  39. 39.
    De Michelis, M. I., Pugliarello, M. C., and Rasi-Caldogno, F., Fusicoccin binding to its plasma membrane receptor and the activation of the plasma membrane H+-ATPase. I. Characteristics and intracellular localization of the fusicoccin receptor in microsomes from radish seedlings. Plant Physiol.90 (1989) 133–139.Google Scholar
  40. 40.
    Dobrowolski, D. C., and Foote, C. S., Cercosporin, a singlet oxygen generator. Angew. Chem. Int. Ed. Engl.22 (1983) 720–721.CrossRefGoogle Scholar
  41. 41.
    Dohrmann, U., Hertel, R., Pesci, P., Cocucci, S. M., Marrè, E., Randazzo, G., and Ballio, A., Localization of in vitro binding of the fungal toxin fusicoccin to plasmamembrane-rich fractions from corn coleoptiles. Plant Sci. Lett.9 (1977) 291–299.CrossRefGoogle Scholar
  42. 42.
    Duke, S. O., and Vaughn, K. C., Lack of involvement of polyphenol oxidase in ortho-hydroxylation of phenolic compounds in mung bean seedlings. Physiol. Plant.54 (1982) 381–385.Google Scholar
  43. 43.
    Durbin, R. D., and Uchytil, T. F., The effect of tentoxin on fusicoccin-induced stomatal opening. Phytopath. Medit.15 (1976) 62–63.Google Scholar
  44. 44.
    Durbin, R. D., Uchytil, T. F., and Sparapano, L., The effect of tentoxin on stomatal aperture and potassium content of guard cells. Phytopathology63 (1973) 1077–1078.Google Scholar
  45. 45.
    Fajola, A. O., Cercosporin, a phytotoxin fromCercospora spp. Physiol. Plant Path.13 (1978) 157–164.Google Scholar
  46. 46.
    Feyerabend, M., and Weiler, E. W., Characterization and localization of fusioccin-binding sites in leaf tissues ofVicia faba L. probed with a novel radioligand. Planta174 (1988) 115–122.CrossRefGoogle Scholar
  47. 47.
    Feyerabend, M., and Weiler, E. W., Photoaffinity labelling and partial purification of the putative plant receptor for the fungal wilt-inducing toxin fusicoccin. Planta178 (1989) 282–290.CrossRefGoogle Scholar
  48. 48.
    Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A., and Ikehara, Y., Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. biol. Chem.263 (1988) 18 545–18 552.Google Scholar
  49. 49.
    Fulton, N. O., Bollenbacher, K., and Templeton, G. E., A metabolite fromAlternaria tenuis that inhibits chlorophyll production. Phytopathology55 (1965) 49–51.Google Scholar
  50. 50.
    Gianani, L., Cocucci, S., and Morgutti, S., Ophiobolin A and fusicoccin interaction on proton extrusion from Maize roots. Phytopath. Medit.19 (1980) 191–192.Google Scholar
  51. 51.
    Gianani, L., Cocucci, S., Pardi, D., and Randazzo, G., Effects of ophiobolin B on cell enlargement and H+/K+ exchange in maize coleoptile tissues. Planta146 (1979) 271–274.CrossRefGoogle Scholar
  52. 52.
    Hager, A., Hampp, R., and Mehrle, W., Mechanism of growth induction by ester compounds. Studies with segments and protoplasts of oat coleoptiles. in: Plant Growth Substances 1985, pp. 284–292. Ed. M. Bopp. Springer-Verlag, Berlin 1986.Google Scholar
  53. 53.
    Hartman, P. E., Dixon, W. J., Dahl, T. A., and Daub, M. E., Multiple modes of photodynamic action by cercosporin. Photochem. Photobiol.47 (1988) 699–703.PubMedGoogle Scholar
  54. 54.
    Hartman, P. E., Suzuki, C. K., and Stack, M. E., Photodynamic production of superoxide in vitro by altertoxins in the presence of reducing agents. Appl. envir. Microbiol.55 (1989) 7–14.Google Scholar
  55. 55.
    Heitz, F., Jacquier, R., Kaddari, F., and Verducci, J., Aggregation and ion transfer induced by tentoxin. Biophys. Chem.23 (1986) 245–249.CrossRefPubMedGoogle Scholar
  56. 56.
    Heitz, F., Kaddari, F., Van Mau, N., Verducci, J., Raniri Seheno, H., and Lazaro, R., Ionic pores formed by cyclic peptides. Biochimie71 (1989) 71–76.CrossRefPubMedGoogle Scholar
  57. 57.
    Horner, R. D., Froehlich, J. P., and Moudrianakis, F. N., Initial products of photophosphorylation with AMP and (32P)Pi. J. biol. Chem.258 (1983) 5618–5622.PubMedGoogle Scholar
  58. 58.
    Hradil, C. M., Hallock, Y. F., Clardy, J., Kenfield, D. S., and Strobel, G., Phytotoxins fromAlternaria cassiae. Phytochemistry28 (1989) 73–75.CrossRefGoogle Scholar
  59. 59.
    Klotz, M. G., Gündel, J., Müller, E., and Liebermann, B., Tentoxin action on the electric properties of a lipid bilayer membrane. Stud. Biophys.90 (1982) 53–54.Google Scholar
  60. 60.
    Kohlbrenner, W. E., and Boyer, P. D., Probes of catalytic site cooperativity during catalysis by the chloroplast adenosine triphosphate and the adenosine triphosphate synthase. J. biol. Chem.258 (1983) 10 881–10 886.Google Scholar
  61. 61.
    Kojima, M., and Takeuchi, W., Detection and characterization ofp-coumaric acid hydroxylase in mung bean,Vigna mungo, seedlings. J. Biochem.105 (1989) 265–270.PubMedGoogle Scholar
  62. 62.
    Kuyama, S., and Tamura, T., Cercosporin A pigment ofCercosporina kikuchii Matsumoto et Tomoyasu. I. Cultivation of fungus, isolation and purification of pigment. J. Am. Chem. Soc.79 (1957) 5725–5726.CrossRefGoogle Scholar
  63. 63.
    Leung, P. C., Graves, L. M., and Tipton, C. L., Characterization of the interaction of ophiobolin A and calmodulin. Int. J. Biochem.20 (1988) 1351–1359.CrossRefPubMedGoogle Scholar
  64. 64.
    Leung, P. C., Taylor, W. A., Wang, J. H., and Tipton, C. L., Role of calmodulin inhibition in the mode of action of Ophiobolin A. Plant Physiol.77 (1985) 303–308.Google Scholar
  65. 65.
    Leung, P. C., Taylor, W. A., Wang, J. H., and Tipton, C. L., Ophiobolin A, a natural product inhibitor of calmodulin. J. biol. Chem.259 (1984) 2742–2747.PubMedGoogle Scholar
  66. 66.
    Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H. P., Yuan, L. C., and Klausner, P. D., Microtubuledependent retrograde transport of proteins into the ER in the presence of brefeldi. A suggests an ER recycling pathway. Cell60 (1990) 821–836.PubMedGoogle Scholar
  67. 67.
    Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S., and Klausner, R. D., Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell56 (1989) 801–813.CrossRefPubMedGoogle Scholar
  68. 68.
    Macri, F., and Vianello, A., Inhibition of K+ uptake, H+ extrusion and K+-activated ATPase, and depolarization of transmembrane potential in plant tissues treated withCercospora beticola toxin. Physiol. Plant Path.15 (1979) 161–170.Google Scholar
  69. 69.
    Macri, F., and Vianello, A., Photodynamic activity of cercosporin on plant tissues. Plant Cell Envir.2 (1979) 267–271.Google Scholar
  70. 70.
    Macri, F., and Vianello, A., Photodynamic activity of compounds structurally related to cercosporin. Agric. biol. Chem.44 (1980) 2967–2960.Google Scholar
  71. 71.
    Macri, F., Del'Anntone, P., and Vianello, A., ATP-dependent proton uptake inhibited byCercospora beticola toxin in pea stem microsomal vesicles. Plant Cell Eavir.6 (1983) 555–558.Google Scholar
  72. 72.
    Marra, M., Aducci, P., and Ballio, A., Immunoaffinity chromatography of fusicoccin. J. Chronat.440 (1988) 47–51.CrossRefGoogle Scholar
  73. 73.
    Marra, M., Aducci, P., and Ballio, A., Immunoaffinity chromatography of endogenous ligands for fusicoccin binding sites, in: Phytotoxins and Plant Pathogenesis, pp. 359–361. Eds A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.Google Scholar
  74. 74.
    Marrè, E., Fusicoccin: a tool in plant physiology. A. Rev. Plant Physiol.30 (1979) 273–288.CrossRefGoogle Scholar
  75. 75.
    Marrè, E., Mechanism of action of phytotoxins affecting plasmalemma functions. Progr. Phytochem.6 (1980) 253–284.Google Scholar
  76. 76.
    Marrè, E., Fusicoccin and hormone-induced changes of H+ extrusion: physiological implications, in: Frontiers of Membrane Research in Agriculture, pp. 429–460. Eds. J. B. St. John, E. Berlin and P. C. Jackson. Rowman & Allanheld. Totowa 1985.Google Scholar
  77. 77.
    Marrè, E., Marrè, M. T., and Romani, G., Action of fusicoccinin vivo: Physiological and biochemical consequences, in: Phytotoxins and Plant Pathogenesis, pp. 131–141. Eds. A. Graniti, R. D. Durbin and A. Ballio. Springer-Verlag, Berlin 1989.Google Scholar
  78. 78.
    Martin, J. A., and Vogel, E., The synthesis of zinniol. Tetrahedron36 (1980) 791–794.CrossRefGoogle Scholar
  79. 79.
    Meyer, C., Feyerabend, M., and Weiler, E. M., Fusicoccin-binding proteins inArabidopsis thaliana(L)Heynh. characterization solubilization and photoaffinity labelling. Plant Physiol.89 (1989) 692–699.Google Scholar
  80. 80.
    Meyer, W. L., Kuyper, L. F., Phelps, D. W., and Cordes, A. W., Structure of the cyclic tetrapeptide tentoxin. Crystal and molecular structure of the dihydro derivative. J. Chem. Soc. chem. Commun. (1974) 399–400.Google Scholar
  81. 81.
    Misumi, Y., Misumi, Y., Miki, K., Takatsuki, A., Tamura, G., and Ikehara, Y., Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. biol. Chem.261 (1986) 11 398–11 403.Google Scholar
  82. 82.
    Nejidat, A., Effect of ophiobolin A on stomatal movement. Role of calmodulin. Plant Cell Physiol.28 (1987) 455–460.Google Scholar
  83. 83.
    Oda, K., Hirose, S., Takami, N., Misumi, Y., Takatsuki, A., and Ikehara, Y., Brefeldin A arrests the intracellular transport of a precursor of complement C3 before its conversion site in rat hepatocytes. FEBS Lett.214 (1987) 135–138.CrossRefPubMedGoogle Scholar
  84. 84.
    Oku, H., Role of parasitic enzymes and toxins in development of characteristic symptoms in plant disease, in: The Dynamic Role of Molecular Constituents in Plant-Parasite Interaction, pp. 237–255. Eds C. J. Mirocha and I. Uritani, Bruce Publ. Co., St. Paul, Minn. 1967.Google Scholar
  85. 85.
    Orsenigo, M., Estrazione e purificazione dellaCochiiobolina, una tossina prodotta daHelminhosporium oryzae. Phytopath. Z.29 (1957) 189–196.Google Scholar
  86. 86.
    Orsenigo, M., Osservazioni preliminari sul meccanismo d'azione della cochliobolina. Giorn. Bot. Ital.68 (1961) 250–252.Google Scholar
  87. 87.
    Pick, U., and Weiss, M., A light-dependent dicyclohexylcarbodiimide-sensitive Ca-ATPase activity in chloroplasts which is not coupled to proton translocation. Eur. J. Biochem.173 (1988) 623–628.CrossRefPubMedGoogle Scholar
  88. 88.
    Quick, W. P., and Mills, J. D., Thiol modulation of chloroplast CF0-CF1 in isolated barley protoplasts and its significance to regulation of carbon dioxide fixation. Biochim. biophys. Acta851 (1986) 166–172.Google Scholar
  89. 89.
    Quick, P., Scheibe, R., and Stitt, M., Use of tentoxin and nigericin to investigate the possiblecontribution of ΔpH to energy dissipation and the control of electron transport in spinach leaves. Biochim. biophys. Acta974 (1989) 282–288.Google Scholar
  90. 90.
    Racker, E., Violand, B., O'Neill, S., Alfonzo, M., and Telford, J., Reconstitution, a way of biochemical research: some new approaches to membrane bound enzymes. Archs Biochem. Biophys.198 (1979) 470–477.CrossRefGoogle Scholar
  91. 91.
    Rasi-Caldogno, F., and Pugliarello, M. C., Fusicoccin stimulates the H+-ATPase of plasmalemma in isolated membrane vesicles from radish. Biochem. biophys. Res. Commun.133 (1985) 280–285.CrossRefPubMedGoogle Scholar
  92. 92.
    Rasi-Caldogno, F., De Michelis, M. I., Pugliarello, M. C., and Marrè, E., H+-pumping driven by the plasma membrane ATPase in membrane vesicles from radish: stimulation by fusicoccin. Plant Physiol.82 (1986) 121–125.Google Scholar
  93. 93.
    Richter, M. L., Gromet-Elhanan, Z., and McCarty, R. E., Reconstitution of the H+-ATPase complex ofRhodospirillum rubrum by the β-subunit of the chloroplast coupling factor 1. J. biol. Chem.261 (1986) 12 109–12 113.Google Scholar
  94. 94.
    Robeson, D. J., and Strobel, G. A., Zinniol induces chlorophyll retention in barley leaves: the selective action of a non-host-specific phytotoxin. Phytochemistry23 (1984) 1597–1599.CrossRefGoogle Scholar
  95. 95.
    Robeson, D., Strobel, G., Matsumoto, G. K., Fisher, E. L., Chen, M. H., and Clardy, J., Alteichin: an unusual phytotoxin fromAlternaria eichorniae, a fungal pathogen of water hyacinth. Experientia40 (1984) 1248–1250.PubMedGoogle Scholar
  96. 96.
    Rossignol, M., Bourdil, I., Santoni, V., and Blein, J.-P., Interaction between plasma membrane H+-ATPase and phytotoxins: use of reconstituted systems, in: Plant Membrane Transport, pp. 379–384. Eds. J. Dainty, M. I. De Michelis, E. Marrè and F. Rasi-Caldogno. Elsevier, Amsterdam 1989.Google Scholar
  97. 97.
    Schlösser, E., Über eine biologisch aktive Substanz ausCercospora beticola. Phytopath. Z.44 (1962) 295–312.Google Scholar
  98. 98.
    Schlösser, E., TheCercospora beticola toxin. Phytopath. Medit.10 (1971) 154–158.Google Scholar
  99. 99.
    Schröder, M., Schulz, S., and Weiler, E. W., The growth-promoting fungal toxin fusicoccin does not act through an ester-hydrolysis mechanism in plants. Naturwissenschaften77 (1990) 82–83.CrossRefGoogle Scholar
  100. 100.
    Schwartz, A., The role of Ca2+ and EGTA on stomatal movements inCommelina communis L. Plant Physiol.79 (1985) 1003–1005.Google Scholar
  101. 101.
    Shoshan, V., and Selman, B. R., Tentoxin inhibition of the light-dependent exchange of chloroplast coupling factor 1 tightly bound adenine nucleotides. J. biol. Chem.254 (1979) 8808–8813.PubMedGoogle Scholar
  102. 102.
    Singleton, V. L., and Bohonos, N., Chemical characterization of the mold product decumbin. Agric. biol. Chem.28 (1964) 77–81.Google Scholar
  103. 103.
    Singleton, V. L., Bohonos, N., and Ullstrup, A. J., Decumbin, a new compound from a species ofPenicillium. Nature181 (1958) 1072–1073.PubMedGoogle Scholar
  104. 104.
    Starratt, A. N., Zinniol: a major metabolite ofAlternaria zinniae. Can. J. Chem.46 (1968) 767–770.Google Scholar
  105. 105.
    Steele, J. A., Uchytil, T. F., Durbin, R. D., Bhatnagar, P., and Rich, D. H., Chloroplast coupling factor 1. A species-specific receptor for tentoxin. Proc. natl Acad. Sci. USA73 (1976) 2245–2248.Google Scholar
  106. 106.
    Steinkamp, M. P., Martin, S. S., Hoefert, L. L., and Ruppel, E. G., Ultrastructure of lesions produced byCercospora beticola in leaves ofBeta vulgaris. Physiol. Plant Path.15 (1979) 13–26.Google Scholar
  107. 107.
    Steinkamp, M. P., Martin, S. S., Hoefert, L. L., and Ruppell, E. G., Ultrastructure of lesions produced in leaves ofBeta vulgaris by cercosporin, a toxin fromCercospora beticola. Phytopathology71 (1981) 1272–1281.Google Scholar
  108. 108.
    Stoessl, A., Structure and biogenetic relations: Fungal non-host-specific, in: Toxins in Plant Disease, p. 151. Ed R. D. Durbin. Academie Press, New York 1981.Google Scholar
  109. 109.
    Stout, R. G., Fusicoccin activity and binding inArabidopsis thaliana. Plant Physiol.88 (1988) 999–1001.Google Scholar
  110. 110.
    Stout, R. G., and Cleland, R. E., Partial characterization of fusicoccin binding to receptor sites on oat root membranes. Plant Physiol.66 (1980) 353–359.Google Scholar
  111. 111.
    Sugawara, F., and Strobel, G., Zinniol, a phyytotoxin, is produced byPhoma macdonaldii. Plant Sci.43 (1986) 19–23.CrossRefGoogle Scholar
  112. 112.
    Suzuki, Y., Tanaka, H., Aoki, H., aand Tamura, T., Ascotoxin(decumbin), a metabolite ofAscochyta imperfecta peck. Agric. biol. Chem.34 (1970) 395–413.Google Scholar
  113. 113.
    Templeton, G. E.,Alternaria toxin related to pathogenesis in plants, in: Microbial Toxins, vol. 8, pp. 160–192. Eds S. Kadis, A. Ciegler and S. J. Aji. Academic Press, New York 1972.Google Scholar
  114. 114.
    Thuleau, P., Graziana, A., Rossignol, M., Kauss, H., Auriol, P., and Ranjeva, R., Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc. natl Acad. Sci. USA85 (1988) 5932–5935.Google Scholar
  115. 115.
    Tietjen, K. G., and Matern, U., Induction and suppression of phytoalexin biosynthesis in cultured cells of safflower,Carthamus tinctorius L., by metabolites ofAlternaria carthami Chowdhury. Archs Biochem. Biophys.229 (1984) 136–144.CrossRefGoogle Scholar
  116. 116.
    Teitjen, K. G., Hammer, D., and Matern, U., Determination of toxin distribution inAlternaria leaf spot diseased tissue by radioimmunoassay. Physiol. Plant Path.26 (1985) 241–257.Google Scholar
  117. 117.
    Tietjen, K. G., Schaller, E., and Matern, U., Phytotoxins fromAlternaria carthami Chowdhury: structural identification and physiological significance. Physiol. Plant Path.23 (1983) 387–400.Google Scholar
  118. 118.
    Tipton, C. L., Paulsen, P. V., and Betts, R. E., Effects of ophiobolin-A on ion leakage and hexose uptake by maize roots. Plant Physiol.59 (1977) 907–910.Google Scholar
  119. 119.
    Tognoli, L., Beffagna, N., Pesci, P., and Marrè, E., On the relationship between ATPase activity and FC binding capacity of crude and partially purified microsomal preparations from maize coleoptiles. Plant Sci. Lett.16 (1979) 1–14.CrossRefGoogle Scholar
  120. 120.
    Takatsuki, A., and Tamura, G., Brefeldin A, a specific inhibitor of intracellular translocation of vesicular stomatitis virus G protein: Intracellular accumulation of high-mannose type G protein and inhibition of its cell surface expression. Agric. biol. Chem.49 (1985) 899–902.Google Scholar
  121. 121.
    Turner, N. C., and Graniti, A., Fuscioccin, a fungal toxin that opens stomata. Nature223 (1969) 1070–1071.Google Scholar
  122. 122.
    Ulmer, J. B., and Palade, G. E., Targeting and processing of glycophorins in murine erythroleukemia cells. Use of brefeldin A as a perturbant of intracellular traffic. Proc. natl Acad. Sci. USA86 (1989) 6992–6996.PubMedGoogle Scholar
  123. 123.
    Vaughn, K. C., and Duke, S. O., Tentoxin-induced loss of plastidic polyphenol oxidase. Physiol. Plant.53 (1981) 421–428.Google Scholar
  124. 124.
    Venkataramani, K., Isolation of Cercosporin fromCercospora personata. Phytopath. Z.58 (1967) 379–382.Google Scholar
  125. 125.
    Weiss, U., Merlini, L., and Nasini, G., Naturally occurring perylenquinones, in: Progress in the Chemistry of Organic Natural products, vol. 52, pp. 1–71. Eds W. Herz, H. Grisebach, G. W. Kirby and Ch. Tamm. Springer-Verlag, Wien 1987.Google Scholar
  126. 126.
    White, G. A., and Starratt, A. N., The production of a phytotoxic substance byAlternaria zinniae. Can. J. Bot.45 (1967 2087–2290.Google Scholar
  127. 127.
    Willmer, C. M., and Mansfield, T. A., A critical examination of the use of detached epidermis in studies of stomatal physiology. New Phytol.68 (1969) 363–375.Google Scholar
  128. 128.
    Yamazaki, S. A., Okubo, A., Akiyama, Y., and Fuwa, K., Cercosporin, a novel photodynamic pigment isolated fromCercospora kikuchii. Agric. biol. Chem.39 (1975) 287–288.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • A. Ballio
    • 1
  1. 1.Dipartimento di Scienze BiochimicheUniversità ‘La Sapienza’Roma(Italy)

Personalised recommendations