Advertisement

Experientia

, Volume 50, Issue 6, pp 536–542 | Cite as

The range of life in amber: significance and implications in DNA studies

  • G. O. PoinarJr.
Multi-Author Reviews

Abstract

A survey of the major fossiliferous amber deposits is provided, including ages and various categories of life forms reported from each. The frequence of occurrence of the major groups of plants and animals in these amber deposits is also given. Thus far, DNA from four insect and one plant species has been extracted from amber fossils. In the case of the stingless bee in Dominican amber, evidence of reproducibility is provided, since two independent laboratories isolated DNA from six or more different specimens of the same insect.

Amber sources for DNA studies are listed together with their advantages and disadvantages. The important points are the availability of desired pieces, the proper identification of the fossil, verification of the amber deposit, the cost involved, and the feasibility of causing damage to the specimen. The availability of several types of amber (Mexican, Dominican, Baltic, Chinese, Canadian, Siberian and Lebanese) at four major sources (academic collections, commercial dealers, private collections and amber mines) is discussed. The scientific implications of obtaining DNA from amber inclusions are presented.

Key words

Life forms in amber amber sources DNA studies with amber organisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandel, K., and Vavra, N., Ein fossiles Harz aus der Unterkreide Jordaniens. Natn Jb. Geol. Palaeont. Mh.1 (1981) 19–33.Google Scholar
  2. 2.
    Cambie, R. C., A New Zealand phytochemical register, Part III. J. R. Soc. N.Z.6 (1976) 307–379.Google Scholar
  3. 3.
    Cano, R. J., Poinar, H., and Poinar, G. O. Jr., Isolation and partial characterization of DNA from the beeProplebeia dominicana (Apidae: Hymenoptera) in 25–40 million year-old amber. Med. Sci. Res.20 (1992) 249–251.Google Scholar
  4. 4.
    Cano, R. J., Poinar, H. N., Roubik, D., and Poinar, G. O. Jr., Enzymatic amplification and nucleotide sequencing of potions of the 18s rRNA gene of the beeProplebeia dominicana (Apidae: Hymenoptera) isolated from 25–40 million year old Dominican amber. Med. Sci. Res.20 (1992) 619–622.Google Scholar
  5. 5.
    Cano, R. J., Poinar, H. N., Pieniazek, J. J., Acra, A., and Poinar, G. O. Jr., Amplification and sequencing of DNA from a 120–135 million year old weevil. Nature363 (1993) 536–538.CrossRefPubMedGoogle Scholar
  6. 6.
    DeSalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D., DNA sequences from a fossil termite in Oligo-Miocene amber and phylogentic implications. Science257 (1992) 1800–1882.Google Scholar
  7. 7.
    Ehrlich, A. H., and Ehrlich, P. R., Earth. Franklin Watts, New York 1987.Google Scholar
  8. 8.
    Ehrlich, P. R., The loss of diversity: causes and consequences, in: Biodiversity, pp. 21–35. Ed. E. O. Wilson. National Academy Press, Washington, D.C. 1988.Google Scholar
  9. 9.
    Farnsworth, N. R., Screening plants for new medicines, in: Biodiversity, pp. 83–97. Ed. E. O. Wilson, National Academy Press, Washington, D.C. 1988.Google Scholar
  10. 10.
    Hoelzel, R., quoted in: Henwood, A. A., Insect taphonomy from tertiary amber of the Dominican Republic. Ph.D. Thesis, University of Cambridge, England, October 1992.Google Scholar
  11. 11.
    Lambert, J. B., Frye, J. S., and Poinar, G. O. Jr., Analysis of North American amber by carbon-13 NMR spectroscopy. Geoarchaeology5 (1990) 43–52.Google Scholar
  12. 12.
    Lindahl, T., Instability and decay of the primary structure of DNA. Nature362 (1993) 709–715.CrossRefPubMedGoogle Scholar
  13. 13.
    Mims, F. M., Save the amber. Nature362 (1993) 389.CrossRefGoogle Scholar
  14. 14.
    Odum, E. P., Basic Ecology. Saunders College Publishing, Philadelphia 1983.Google Scholar
  15. 15.
    Poinar, G. O. Jr., Amber- true or false? Gems Miner.534 (1982) 80–84.Google Scholar
  16. 16.
    Poinar, G. O. Jr., and Hess, R., Ultrastructure of 40 million year old insect tissue. Science215 (1982) 1241–2.Google Scholar
  17. 17.
    Poinar, G. O. Jr., and Hess, R., Preservative qualities of recent and fossil resins: Electron micrograph studies on tissue preserved in Baltic amber. J. Baltic Stud.16 (1985) 222–230.Google Scholar
  18. 18.
    Poinar, G. O. Jr., Life in amber. Stanford University Press, Stanford, CA 1992.Google Scholar
  19. 19.
    Poinar, G. O. Jr., and Columbus, J. T., Adhesive grass spikelet with mammalian hair in Dominican amber. First fossil evidence of epizoochory. Experientia48 (1992) 906–908.PubMedGoogle Scholar
  20. 20.
    Poinar, G. O. Jr., Poinar, H. N., and Cano, R. J., DNA from amber inclusions, in: Ancient DNA. Eds B. Herrmann and S. Hummel. Springer-Verlag, New York, (1994) 92–103.Google Scholar
  21. 21.
    Poinar, N. H., Cano, R. J., Poinar, G. O. Jr., DNA from an extinct plant. Nature363 (1993) 677.CrossRefGoogle Scholar
  22. 22.
    Raup, D. M., Diversity crisis in the geological past, in: Biodiversity, pp. 51–57. Ed. E. O. Wilson. National Academy Press, Washington, D.C. 1988.Google Scholar
  23. 23.
    Wilson, E. O., The current state of biological diversity, in: Biodiversity, pp. 3–18. Ed. E. O. Wilson, National Academy Press, Washington, D.C. 1988.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1994

Authors and Affiliations

  • G. O. PoinarJr.
    • 1
  1. 1.College of Natural ResourcesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations