Advertisement

Unternehmensforschung

, Volume 8, Issue 2, pp 65–74 | Cite as

Sequentielle Versuchspläne

  • W. Vogel
Article
  • 54 Downloads

Zusammenfassung

Es wird eine Einführung in einige Gebiete der sequentiellen Versuchsplanung gegeben.

Summary

An introduction to some topics in the sequential design of experiments is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    Albert, A. E.: The sequential design of experiments for infinitely many states of nature. Ann. Math. Stat. 32 (1961), S. 774–799.Google Scholar
  2. [2]
    Bellman, R.: A problem in the sequential design of experiments. Sankhyā 16 (1956), S. 221–229.Google Scholar
  3. [3]
    Bradt, R. N., Johnson, S. M., andKarlin, S.: On sequential designs for maximizing the sum ofn observations. Ann. Math. Stat. 27 (1956), S. 1060–1074.Google Scholar
  4. [4]
    Chernoff, H.: Sequential design of experiments. Ann. Math. Stat. 30 (1959), S. 755–770.Google Scholar
  5. [5]
    Chernoff, H.: Motivation for an approach to the sequential design of experiments. In Decision and information processes,R. E. Machol (Ed.), New York 1959.Google Scholar
  6. [6]
    Feldman, D.: Contributions to the “two-armed bandit” problem. Ann. Math. Stat. 33 (1962), S. 847–856.Google Scholar
  7. [7]
    Isbell, J. R.: On a problem of Robbins. Ann. Math. Stat. 30 (1959), S. 606–610.Google Scholar
  8. [8]
    Robbins, H. E.: Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 55 (1952), S. 527–535.Google Scholar
  9. [9]
    Robbins, H. E.: A sequential decision problem with a finite memory. Proc. Nat. Acad. Sci. 42 (1956), S. 920–923.Google Scholar
  10. [10]
    Vogel, W.: A sequential design for the two armed bandit. Ann. Math. Stat. 31 (1960), S. 430–443.Google Scholar
  11. [11]
    Vogel, W.: An asymptotic minimax theorem for the two armed bandit problem. Ann. Math. Stat. 31 (1960), S. 444–451.Google Scholar
  12. [12]
    Vogel, W.: Ein Irrfahrten-Problem und seine Anwendung auf die Theorie der sequentiellen Versuchs-Pläne. Arch. der Math. XI (1960), S. 310–320.Google Scholar
  13. [13]
    Vogel, W.: Sequentielle Versuchspläne. Metrika 4 (1961), S. 140–157.Google Scholar
  14. [14]
    Vogel, W.: Bemerkungen zu einem sequentiellen Versuchsplan. ZAMM-Sonderheft (GAMM-Tagung), Bd. 41 (1961), S. T179-T181.Google Scholar
  15. [15]
    White, G. M.: Penny matching maschines. Information and Control 2 (1959), S. 349–363.Google Scholar

Copyright information

© Physica-Verlag 1964

Authors and Affiliations

  • W. Vogel
    • 1
    • 2
  1. 1.Mathem. Institut der Universität TübingenGermany
  2. 2.Tübingen

Personalised recommendations