Experientia

, Volume 50, Issue 5, pp 483–485 | Cite as

Inhibition of the sodium pump does not cause a stoichiometric decrease of ATP-production in energy limited fish hepatocytes

  • G. Krumschnabel
  • W. Wieser
Research Articles

Abstract

In isolated goldfish hepatocytes underaerobic conditions the energy requirement for the sodium pump (calculated from Rb+ flux) is closely matched by the ouabain-sensitive fraction of oxygen consumption, whereas during in vitroanoxia (cyanide inhibition of the electron transport chain) the measured ATP demand of the sodium pump clearly exceeds ouabain-sensitive ATP production by anaerobic glycolysis. We conclude that when the energy status of cells is low, part or all of the ATP spared by the inhibition of a particular function may be used for fuelling other ATP-consuming functions.

Key words

Goldfish hepatocytes (Na+, K+)-ATPase protein synthesis membrane-metabolic coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ferguson, R. A., Tufts, B. L., and Boutilier, R. G., J. exp. Biol.143 (1989) 133.PubMedGoogle Scholar
  2. 2.
    Arthur, P. G., Hogan, M. C., Bebout, D. E., Wagner, P. D., and Hochachka, P. W., J. appl. Physiol.73 (1992) 737.PubMedGoogle Scholar
  3. 3.
    Siems, W., Dubiel, W., Dumdey, R., Müller, M., and Rapoport, S. M., Eur. J. Biochem.139 (1984) 101.CrossRefPubMedGoogle Scholar
  4. 4.
    Müller, M., Siems, W., Buttgereit, F., Dumdey, R., and Rapoport, S. M., Eur. J. Biochem.161 (1986) 701.CrossRefPubMedGoogle Scholar
  5. 5.
    Hammerstedt, R. H., Volonte, C., and Racker, E., Archs Biochem. Biophys.266 (1988) 111.CrossRefGoogle Scholar
  6. 6.
    Racker, E., Johnson, J. H., and Blackwell, M. T., J. biol. Chem.258 (1983) 3702.PubMedGoogle Scholar
  7. 7.
    Fagen, J. B., and Racker, E., Cancer Res.38 (1978) 749.PubMedGoogle Scholar
  8. 8.
    Siems, W., Schmidt, H., Gruner, S., and Jakstadt, M., Cell Biochem. Funct.10 (1992) 61.CrossRefPubMedGoogle Scholar
  9. 9.
    Hammerstedt, R. H., and Lardy, H. A., J. biol. Chem.258 (1983) 8759.PubMedGoogle Scholar
  10. 10.
    Hochachka, P. W., and Somero, G. N., Biochemical Adaptation. Princeton University Press, Princeton 1984.Google Scholar
  11. 11.
    Mandel, L. J., and Balaban, R. S., Am. J. Physiol.240 (1981) F357.PubMedGoogle Scholar
  12. 12.
    Silva, P., Hallac, K., Spokes, K., and Epstein, F. H., Am. J. Physiol.242 (1982) F508.PubMedGoogle Scholar
  13. 13.
    Soltoff, S. P., and Mandel, L. J., J. gen. Physiol.84 (1984) 643.PubMedGoogle Scholar
  14. 14.
    Kutchai, H., and Geddis, L. M., Am. J. Physiol.254 (1984) C107.Google Scholar
  15. 15.
    Tempest, D. W., TIBS3 (1978) 180.Google Scholar
  16. 16.
    Wieser, W., and Medgyesy, N., Proc. R. Soc. Lond B242 (1990) 51.Google Scholar
  17. 17.
    Wieser, W., and Gnaiger, E., Energy Transformations in Cells and Organisms. George Thieme Verlag, Stuttgart 1989.Google Scholar
  18. 18.
    Rombough, P. J., Society for Experimental Biology, Canterbury Meeting (Abstracts, p. 41) 1993.Google Scholar
  19. 19.
    Walker, R. M., and Johansen, P. H., Can. J. Zool.55 (1977) 304.PubMedGoogle Scholar
  20. 20.
    Van den Thillart, G., Van Berge-Henegouwen, M., and Kesbeke, F., Comp. Biochem. Physiol.76A (1983) 295.CrossRefGoogle Scholar
  21. 21.
    Schwarzbaum, P. J., Niederstätter, H., and Wieser, W., Physiol. Zool.65 (1992) 699.Google Scholar
  22. 22.
    Krumschnabel, G., Schwarzbaum, P. J., and Wieser, W., Physiol. Zool. (1994) in press.Google Scholar
  23. 23.
    Bergmeyer, H. U., Methods of Enzymatic Analysis. Vol. 6, 3rd ed. Verlag Chemie, Deefield Beach, FL 1984.Google Scholar
  24. 24.
    Longo, N., Griffin, L. D., and Elsas, L. J., Am. J. Physiol.260 (1991) C1341.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • G. Krumschnabel
    • 1
  • W. Wieser
    • 1
  1. 1.Institute of Zoology, Department of EcophysiologyUniversity of InnsbruckInnsbruck(Austria)

Personalised recommendations