Zeitschrift für Operations Research

, Volume 29, Issue 6, pp B185–B199 | Cite as

Numerical solution of an inverse problem connected with continuous casting of steel

  • H. W. Engl
  • T. Langthaler
Article

Abstract

In continuous casting of steel, the solidification process can be influenced by external cooling and by the casting speed. We describe an algorithm based on nonlinear constrained optimization which computes values of these control variables such that a desirable solidification front is approximated within an accuracy that is sufficient for practical purposes.

Keywords

Control Variable Inverse Problem Practical Purpose Solidification Process Continuous Casting 

Zusammenfassung

Der Erstarrungsprozeß beim Strangguß von Stahl kann durch externe Kühlung und durch die Gießgeschwindigkeit beeinflußt werden. Wir beschreiben eine auf nichtlinearer Optimierung beruhende Methode, diese Kontrollvariablen so zu berechnen, daß ein vorgegebener Erstarrungsverlauf mit für praktische Zwecke hinreichender Genauigkeit approximiert werden kann.

References

  1. Bamberger,M., S. Nadiv, andG.B. Barkay: Mathematical model for the solidification of high-carbon steel in continuous casting. Iron and Steel International, 1977, 43–48.Google Scholar
  2. Brimacombe,J.K.: Design of continuous casting machines based on a heat-flow analysis: state-of-the-art review. Can. Met. Quart,15, 2, 1976, 163–175.Google Scholar
  3. Brimacombe,J.K., P.K. Agarwal, L.A. Baptista, S. Hibbins, andB. Prabhakar: Spray cooling in the continuous casting of steel. 63rd National Open Hearth and Basic Oxygen Steel Conf. Proceedings,63, 1980, 235–252.Google Scholar
  4. Cotton,D., andR. Reemtsen: The numerical solution of the inverse Stefan problem in two space variables. SIAM J. Appl. Math.,44, 1984, 996–1013.Google Scholar
  5. Fasano,A., andM. Primicerio: Free boundary problems: theory and applications. Vol. I and II, Research Notes in Mathematics, Pitman Advanced Publishing Program, 1983.Google Scholar
  6. —: General free boundary problems for the heat equation. J. Math. Anal. Appl.59, 1977, 694–723.Google Scholar
  7. Hock,W., andK. Schittkowski: Test examples for nonlinear programming codes. Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin-Heidelberg-New York 1981.Google Scholar
  8. Hoffmann,K., undP. Knabner: Freie Randwertprobleme. In: Approximation in Theorie und Praxis. Ed. by: G. Meinardus, Bibliographisches Institut, Mannheim 1979.Google Scholar
  9. Hoffmann,K., andJ. Sprekels: Real-time control in a free boundary problem connected with the continuous casting of steel. Preprint 12, Universität Augsburg, 1983.Google Scholar
  10. Jaquemar,C.: Rechnergestützte Auslegung von Aufheiz- und Abkühlvorgängen bei der Stahlerzeugung und Wärmebehandlung. Berg- und Hüttenmännische Monatshefte, Heft 1, 1979, 20–30.Google Scholar
  11. Jochum,P.: The numerical solution of the inverse Stefan problem. Numer. Math.34, 1980, a, 411–429.Google Scholar
  12. —: Differentiable dependence upon the data in a one-phase Stefan problem. Math. Meth. Appl. Sci.2, 1980, b, 73–90.Google Scholar
  13. Knabner,P.: Control of Stefan problems by means of linear-quadratic defect minimization. Numer. Math.46, 1985, 429–442.Google Scholar
  14. -: Fragen der Rekonstruktion und der Steuerung bei Stefanproblemen und ihre Behandlung über lineare Ersatzaufgaben. Dissertation, Universität Augsburg, 1983.Google Scholar
  15. Kroeger,P.G., andS. Ostrach: The solution of a two-dimensional freezing problem including convection effects in the liquid region. Int. J. Heat Mass Transfer17, 1974, 1191–1207.Google Scholar
  16. Kurz,W., andB. Lux: Lokalisierung der Erstarrungsfront beim Stranggießen von Stahl. Berg- und Hüttenmännische Monatshefte5, 1969, 123–130.Google Scholar
  17. Langthaler, T.: Numerische Lösung eines inversen Erstarrungsproblems beim Stranggießen von Stahl. Diplomarbeit, Universität Linz, 1985.Google Scholar
  18. Lindorfer,B., andK. Schwaha: Thermalanalysis ofcc process. Internal Report VOEST-ALPINE, 1984.Google Scholar
  19. Miyazawa,K., andI. Muchi: Mathematical model for determining solidification profiles of slab in the vertical type and the circular-arc type continuous casting machines. Trans. of the Iron and Steel Institute of Japan15, 1975, 37–44.Google Scholar
  20. Mizikar,E.A.: Mathematical heat transfer model for solidification of continuously cast steel slabs. AIME Trans.,239, 1967, 1747–1753.Google Scholar
  21. Reemtsen,R., andA. Kirsch: A method for the numerical solution of the one-dimensional inverse Stefan problem. Numer. Math.45, 1984, 253–273.Google Scholar
  22. Rogberg,B.: Testing and application of a computer program for simulating the solidification process of a continuously cast strand. Scand. J. Metallurgy12, 1983, 13–21.Google Scholar
  23. Rosen,J.B.: The gradient projection method for nonlinear programming. (Part I, linear constraints), SIAM J. Appl. Math.8, 1960, 181–217.Google Scholar
  24. Schwerdtfeger,K.: Anwendung der Methode des Wärmebilanzintegrals zur Berechnung der Erstarrungsgeschwindigkeit von Eisen-Kohlenstoff-Legierungen. Arch. Eisenhüttenwes.44, 1973, 411–418.Google Scholar
  25. Voller,V., andM. Cross: Accurate solutions of moving boundary problems using the enthalpy method. Int. J. Heat Mass Transfer,24, 1981, 545–556.Google Scholar

Copyright information

© Physica-Verlag 1985

Authors and Affiliations

  • H. W. Engl
    • 1
  • T. Langthaler
    • 1
  1. 1.Institut für MathematikJohannesKepler-UniversitätLinzAustria

Personalised recommendations