, Volume 48, Issue 6, pp 570–575 | Cite as

Metabolic biochemistry and the making of a mesopelagic mammal

  • P. W. Hochachka
Multi-author Review Ecological Implications of Metabolic Biochemistry


Large seals such as northern and southern elephant seals and Weddell seals are able to dive for startling duration and enormous depth. The current dive duration record is 120 minutes (recorded for the southern elephant seal); the current depth record is 1.5 km (recorded for the northern elephant seal). Equally striking is the widespread observation that these seals when at sea spend close to 90% of the time submerged and often at great depth. For practical purposes, these species can be viewed as true mesopelagic animals when they are at sea. A review of current knowledge indicates that low power output but high efficiency metabolic functions of skeletal muscles coupled with inherently low (and potentially further suppressible) metabolic rates constitute strategic biochemical components in the ‘making’ of a mesopelagic mammal.

Key words

Seal metabolism metabolic efficiency metabolic suppression seal muscle enzymes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arthur, P. G., Hogan, M. C., Bebout, D. E., Wagner, P. D., and Hochachka, P. W., Modelling effects of hypoxia on ATP turnover in exercising muscle. J. appl. Physiol. (1992) in press.Google Scholar
  2. 2.
    Castellini, M. A., Kooyman, G. L., and Ponganis, P. J., Metabolic rates of freely diving Weddell seals: Correlations with oxygen stores, swim velocity, and diving duration. J. exp. Biol. (1992) in press.Google Scholar
  3. 3.
    Chinet, A., Control or respiration in skeletal muscle at rest. Experientia46 (1990) 1194–1196.PubMedGoogle Scholar
  4. 4.
    Costa, D. P., Methods for studying the energetics of freely diving animals. Can. J. Zool.66 (1988) 45–52.Google Scholar
  5. 5.
    Davis, R. W., Lactate and glucose metabolism in the resting and diving harbor seal (Phoca vitulina). J. comp. Physiol.153 (1983) 275–288.Google Scholar
  6. 6.
    Delong, R. L., and Stewart, B. S., Diving patterns of northern elephant seal bulls. Mar. Mammal Sci.7 (1991) 369–384.Google Scholar
  7. 7.
    Foreman, R. A., III, Enzymatic profiles of skeletal muscles from harbon wals (Phoca vitulina) and fin whales (Balaenoptera physalis). PhD Thesis, Univ. of British Columbia, Vancouver 1991.Google Scholar
  8. 8.
    Gnaiger, E., Optimum efficiency of energy transformation and the evolution of catabolic pathways. Functional Ecol.6 (1992) 234–241.Google Scholar
  9. 9.
    Guppy, M., Hill, R. D., Schneider, R. C., Qvist, J., Liggins, G. C., Zapol, W. M., and Hochachka, P. W., Microcomputer assisted metabolic studies of voluntary diving of Weddell seals. Am. J. Physiol.250 (1986) R175-R187.PubMedGoogle Scholar
  10. 10.
    Hance, A. J., Robin, E. D., Halter, N., Lewiston, D. A., Robin, L., Cornell, M., Caligiuri, M., and Theodore, J., Hormonal changes and enforced diving in the harbor seal Phoca vitulina. II. Plasma catecholamines. Am. J. Physiol.242 (1982) R528-R532.PubMedGoogle Scholar
  11. 11.
    Hill, R. D., Schneider, R. C., Liggins, G. C., Schuette, A. H., Elliott, R. L., Guppy, M., Hochachka, P. W., Qvist, J., Falke, K. J., and Zapol, W. M., Heart rate and body temperature during free diving of Weddell seals. Am. J. Physiol.253, (1987) R344-R351.PubMedGoogle Scholar
  12. 12.
    Hindell, M. A., Slip, D. J., and Burton, H. R., The diving behaviour of adult male and female southern elephant seals (Mirounga leonina) fromMacquarie Island. Austr. J. Zool. (1992) in press.Google Scholar
  13. 13.
    Hindell, M. A., Slip, D. J., Burton, H. R., and Bryden, M. M., Physiological implications of continuous, prolonged and deep dives of the southern elephant seal (Mirounga leonina). Can. J. Zool. (1992) in press.Google Scholar
  14. 14.
    Hochachka, P. W., and Guppy, M., Metabolic Arrest and the Control of Biological Time. Harvard Univ. Press, Cambridge, Mass. 1987.Google Scholar
  15. 15.
    Hochachka, P. W., and Somero, G. N., Biochemical Adaptation. Princeton University Press, Princeton, NJ. 1984.Google Scholar
  16. 16.
    Hochachka, P. W., Stanely, C., Matheson, G. O., McKenzie, D. C., Allen, P. S., and Parkhouse, W. S., Metabolic and work efficiencies during exercise in Andean natives. J. appl. Physiol.70 (1991) 1720–1730.PubMedGoogle Scholar
  17. 17.
    Hochachka, P. W., Stanely, C., McKenzie, D. C., Villena, A., and Monge, C., Enzyme mechanisms for pyruvate-to-lactate flux attenuation: A study of Sherpas, Quechuas, and hummingbirds. Int. J. Sports Med. in press.Google Scholar
  18. 18.
    Hogan, M. C., Arthur, P. G., Bebout, D. E., Hochachka, P. W., and Wagner, P. D., The role of oxygen in regulating tissue respiration in dog muscle working in situ. J. appl. Physiol. (1992) in press.Google Scholar
  19. 19.
    Howald, H., Pette, D., Simoneau, J. A., Uber, A., Hoppler, H., and Cerretelli, P., Effects of chronic hypoxia on muscle enzyme activities. Int. J. Sports Med.11, Suppl. 1 (1990), S10-S14.PubMedGoogle Scholar
  20. 20.
    Kooyman, G. L., Castellini, M. A. and Davis, R. W., Physiology of diving in marine mammals. A. Rev. Physiol.43, (1981) 343–356.CrossRefGoogle Scholar
  21. 21.
    Kooyman, G. L., Castellini, M. A., Davis, R. W., and Maue, R. A., Aerobic diving limits of immature Weddell seals. Diving behaviour and physiology of Weddell seal. J. comp. Physiol.151 (1983) 171–174.Google Scholar
  22. 22.
    Lacombe, A. M. A., and Jones, D. R., Role of adrenal catecholamines during forced submergence in ducks. Am. J. Physiol.261 (1991) R000-R000.Google Scholar
  23. 23.
    Lacombe, A. M. A., and Jones, D. R., Neural and humoral effects on hindlimb vascular resistance of ducks during forced submergence. Am. J. Physiol.261 (1991) R000-R000.Google Scholar
  24. 24.
    Le Beouf, B. J., Costa, D. R., Huntley, A. C., and Feldcamp, S. D., Continuous deep diving in female northern elephant seals, Mirounga angustris. Can. J. Zool.66 (1988) 446–458.Google Scholar
  25. 25.
    Le Beouf, B. J., Naito, Y., Huntley, A. C., and Asaga, T., Prolonged continuous deep diving by northern elephant seals. Can. J. Zool.67 (1989) 2514–2519.Google Scholar
  26. 26.
    Matheson, G. O., Allen, P. S., Ellinger, D. C., Hanstock, C. C., Gheorghiu, D., McKenzie, D. C., Stanely, C., Parkhouse, W. S., and Hochachka, P. W., Skeletal muscle metabolism and work capacity: A 31P-NMR-study of Andean natives and lowlanders. J. appl. Physiol.70 (1991) 1963–1976.PubMedGoogle Scholar
  27. 27.
    Qvist, J., Hill, R. D., Schneider, R. C., Falke, K. J., Guppy, M., Elliot, R. L., Hochachka, P. W., and Zapol, W. M., Hemoglobin concentrations and blood gas tensions of free-diving Weddell seals. J. appl. Physiol.61 (1986) 1560–1569.PubMedGoogle Scholar
  28. 28.
    Scholander, P. F., Physiological adaptations to diving in animals and man. Harvey Lect.57 (1962) 93–110.Google Scholar
  29. 29.
    Wasserman, K., Beaver, W. L., and Whipp, B. J., Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation, Suppl. II,81 (1990) II-14–II-30.Google Scholar
  30. 30.
    Zapol, W. M., Liggins, G. C., Schneider, R. C., Qvist, J., Snider, M. T., Creasy, R. K., and Hochachka, P. W., Regional blood flow during simulated diving in the conscious Weddell seal. J. appl. Physiol.47 (1979) 968–973.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • P. W. Hochachka
    • 1
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations