Skip to main content

Pathways for oxidative fuel provision to working muscles: Ecological consequences of maximal supply limitations

Abstract

The study of metabolic fuel provision and its regulation has reached an exciting stage where specific molecular events can be correlated with parameters of the organism's ecology. This paper examines substrate supply pathways from storage sites to locomotory muscle mitochondria and discusses ecological implications of the limits for maximal flux through these pathways. The relative importance of the different oxidative fuels is shown to depend on aerobic capacity. Very aerobic, endurance-adapted animals such as long distance migrants favor the use of lipids and intramuscular fuels over carbohydrates and circulatory fuels. The hypothesis of functional co-adaptation between oxygen and metabolic fuel supply systems allows us to predict that the capacity of several biochemical processes should be scaled with maximal oxygen consumption. Key enzymes, transmembrane transporter proteins, glucose precursor supply and soluble fatty acid transport proteins must all be geared to support higher maximal glucose and fatty acid fluxes in aerobic than in sedentary species.

This is a preview of subscription content, access via your institution.

References

  1. Bailey, E., Insect Biochemistry and Function. Eds D. J. Candy and B. A. Kilby. Chapman and Hall, London 1975.

    Google Scholar 

  2. Baker, R. R., The Evolutionary Ecology of Animal Migration. Holmes and Meyer, New York 1978.

    Google Scholar 

  3. Baldwin, S. A., and Lienhard, G. E., Glucose transport across plasma membranes: facilitated diffusion systems. T.I.B.S. August (1981) 208–211.

  4. Brooks, G. A., Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals — The “lactate shuttle”, in: Circulation, Respiration, and Metabolism. Current Comparative Approaches. Ed. R. Gilles. Springer-Verlag, New York 1985.

    Google Scholar 

  5. Bulow, J., Subcutaneous adipose tissue blood flow and triacylglycerol mobilization during prolonged exercise in dogs. Pflügers Arch.392 (1982) 230–234.

    Article  Google Scholar 

  6. Burczynski, F. J., Cai, Z. S., Moran, J. B., and Forker, E. L., Palmitate uptake by cultured hepatocytes: albumin binding and stagnant layer phenomena. Am. J. Physiol.257 (1989) G584-G593.

    PubMed  Google Scholar 

  7. Cahill, G. F. J., Physiology of gluconeogenesis, in: Hormonal Control of Gluconeogenesis, vol. 1, pp. 3–13. Ed. N. Kraus-Freidman. CRC Press, Inc, Boca Raton, Florida 1986.

    Google Scholar 

  8. Calles, J., Cunningham, J. J., Jacob, R., Loke, J., Husgar, J., and Felig, P., Influence of exercise on urea, creatinine, and 3-methylhistidine excretion in normal man. Am. J. Physiol.246 (1984) E334-E338.

    PubMed  Google Scholar 

  9. Carraro, F., Hartl, W. H., Stuart, C. A., Layman, D. K., Jahoor, F., and Wolfe, R. R., Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am. J. Physiol.258 (1990) E821-E831.

    PubMed  Google Scholar 

  10. Carruthers, A., Facilitated diffusion of glucose. Physiol. Rev.70 (1990) 1135–1176.

    PubMed  Google Scholar 

  11. Clarke, S. D., and Armstrong, M. K., Cellular lipid binding proteins: expression, function, and nutritional regulation. FASEB J.3 (1989) 2480–2487.

    PubMed  Google Scholar 

  12. Felig, P., Owen, O. E., Wahren, J., and Cahill, G. F., Amino acid metabolism during prolonged starvation. J. clin. Invest.48 (1969) 584–594.

    PubMed  Google Scholar 

  13. Felig, P., and Wahren, J., Fuel homeostasis in exercise. New Engl. J. Med.293 (1975) 1078–1084.

    PubMed  Google Scholar 

  14. French, C. J., Hochachka, P. W., and Mommsen, T. P., Metabolic organization of liver during spawning migration of Sockeye salmon. Am. J. Physiol.245 (1983) R827-R830.

    PubMed  Google Scholar 

  15. Friedman, M. I., Ramirez, I., Bowden, C. R., and Tordoff, M. G., Fuel partitioning and food intake: role for mitochondrial fatty acid transport. Am. J. Physiol.258 (1990) R216-R221.

    PubMed  Google Scholar 

  16. Fushiki, T., Wells, J. A., Tapscott, E. B., and Dohm, G. L., Changes in glucose transporters in muscle in response to exercise. Am. J. Physiol.256 (1989) E580–587.

    PubMed  Google Scholar 

  17. Gessaman, J. A., and Nagy, K. A., Energy metabolism: errors in gas-exchange conversion factors. Physiol. Zool.61 (1988) 507–513.

    Google Scholar 

  18. Glatz, J. F. C., Van der Vusse, G. J., and Veerkamp, J. H., Fatty acid-binding proteins and their physiological significance. N.I.P.S.3 (1988) 41–43.

    Google Scholar 

  19. Gleeson, T. T., and Dalessio, P. M., Lactate: a substrate for reptilian muscle gluconeogenesis following exhaustive exercise. J. comp. Physiol. B160 (1990) 331–338.

    Article  Google Scholar 

  20. Goodyear, L. J., Hirshman, M. F., King, P. A., Horton, E. D., Thompson, C. M., and Horton, E. S., Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J. appl. Physiol.68 (1990) 193–198.

    PubMed  Google Scholar 

  21. Goodyear, L. J., King, P. A., Hirshman, M. F., Thompson, C. M., Horton, E. D., and Horton, E. S., Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am. J. Physiol.258 (1990) E667-E672.

    PubMed  Google Scholar 

  22. Gould, G. W., and Bell, G. I., Facilitative glucose transporters: an expanding family. T.I.B.S.15 (1990) 18–23.

    Google Scholar 

  23. Green, H. J., Reichemann, H., and Pette, D., Fibre type specific transformation in the enzyme activity pattern of rat vastus lateralis muscle by prolonged endurance training. Pflugers Arch. ges. Physiol. 399 (1983) 216–222.

    Article  Google Scholar 

  24. Groen, A. K., Van Roermund, C. W. T., Vervoorn, R. C., and Tager, J. M., Control of gluconeogenesis in rat liver cells. Biochem. J.237 (1986) 379–389.

    PubMed  Google Scholar 

  25. Hirshman, M. F., Waalberg-Henriksson, H., Wardzala, L. J., Horton, E. D., and Horton, E. S., Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle. FEBS Letters238 (1988) 235–239.

    Article  PubMed  Google Scholar 

  26. Hochachka, P. W., Fuels and pathways as designed systems for support of muscle work. J. exp. Biol.115 (1985) 149–164.

    PubMed  Google Scholar 

  27. Hochachka, P. W., Dobson, G. P., and Mommsen, T. P., Role of isozymes in metabolic regulation during exercise: Insights from comparative studies, in: Isozymes: Current Topics in Biological and Medical Research, vol. 8, pp. 91–113. Eds M. C. Rattazzi, J. G. Scandalics and G. S. Whitt. Alan R. Liss, New York 1983.

    Google Scholar 

  28. Hochachka, P. W., and Somero, G. N., Strategies of Biochemical Adaptation. W. B. Saunders, Philadelphia 1973.

    Google Scholar 

  29. Hue, L., The role of futile cycles in the regulation of carbohydrate metabolism in the liver. Adv. Enzymol.52 (1980) 247–331.

    Google Scholar 

  30. Hultman, E., and Harris, R. C., Carbohydrate metabolism, in: Principles of Exercise Biochemistry, vol. 27, pp. 78–119. Ed. J. R. Poortmans. Karger, Basel 1988.

    Google Scholar 

  31. Hurley, B. F., Nemeth, P. M., Martin, W. H. I., Hagberg, J. M., Dalsky, G. P., and Holloszy, J. O., Muscle triglyceride utilization during exercise: effect of training. J. appl. Physiol.60 (1986) 562–567.

    PubMed  Google Scholar 

  32. James, D. E., Strube, M., and Mueckler, M., Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature338 (1989) 83–87.

    Article  PubMed  Google Scholar 

  33. Jenni-Eiermann, S., and Jenni, L., Metabolic responses to flight and fasting in night-migrating passerines. J. comp. Physiol.161 (1991) 465–474.

    Google Scholar 

  34. Kaufmann, M., Simoneau, J.-A., Veerkamp, J. H., and Pette, D., Electrostimulation-induced increases in fatty acid-binding protein and myoglobin in rat fast-twitch muscle and comparison with tissue levels in heart. FEBS Lett.245 (1989) 181–184.

    Article  PubMed  Google Scholar 

  35. Martin, B. R., Metabolic Regulation. A Molecular Approach. Blackwell Scientific Publications, Oxford 1987.

    Google Scholar 

  36. Miyoshi, H., Shulman, G. I., Peters, E. J., Elahi, D., and Wolfe, R. R., Hormonal control of substrate cycling in humans. J. clin. Invest.81 (1988) 1545–1555.

    PubMed  Google Scholar 

  37. Molé, P. A., Exercise metabolism, in: Exercise Medicine: Physiological Principles and Clinical Applications, pp. 43–88. Eds. A. A. Bove and D. T. Lowenthal. Academic Press, New York 1983.

    Google Scholar 

  38. Mommsen, T. P., Comparative gluconeogenesis in hepatocytes from salmonid fishes. Can. J. Zool.64 (1986) 1110–1115.

    Google Scholar 

  39. Mommsen, T. P., French, C. J., and Hochachka, P. W., Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool.58 (1980) 1785–1799.

    Google Scholar 

  40. Moon, T. W., Adaptation, constraint, and the function of the gluconeogenic pathway. Can. J. Zool.66 (1988) 1059–1068.

    Google Scholar 

  41. Newsholme, E. A., Application of knowledge of metabolic integration to the problem of metabolic limitations in sprints, middle distance and marathon running, in: Principles of Exercise Biochemistry, vol. 27, pp. 194–211. Ed. J. R. Poortmans. Karger, Basel 1988.

    Google Scholar 

  42. Nordlie, R. C., Metabolic regulation by multifunctional glucose-6-phosphatase, in: Current Topics in Cellular Regulation, vol. 8, pp. 33–117. Eds B. L. Horecker and E. R. Stadtman. Academic Press, New York 1974.

    Google Scholar 

  43. Peters, R. H., The Ecological Implications of Body Size. Cambridge University Press, Cambridge 1983.

    Google Scholar 

  44. Pilkis, J. S., Claus, T. H., and Raafat El-Maghrabi, M., The role of cyclic AMP in rapid and long-term regulation of gluconeogenesis and glycolysis. Advances in Second Messenger and Phosphoprotein Research22 (1988) 175–191.

    PubMed  Google Scholar 

  45. Rennie, M. J., Edwards, R. H. T., Halliday, D., Davies, C. T. M., Matthews, D. E., and Millward, D. J., Protein metabolism during exercise, in: Nitrogen Metabolism in Man, pp. 509–523. Eds J. C. Waterlow and J. M. L. Stephen. Applied Science Publishers, London 1981.

    Google Scholar 

  46. Roberts, T. J., Weber, J.-M., and Taylor, C. R., Does fuel preference dependend on aerobic capacity? Fat and carbohydrate oxidation in running coyotes, dogs, and goats. The Physiologist33 (1990) A-110.

    Google Scholar 

  47. Rose, C. P., and Goresky C. A., Constraints on the uptake of labeled palmitate by the heart. Circ. Res.41 (1977) 534–545.

    PubMed  Google Scholar 

  48. Sahlin, K., Metabolic changes limiting muscle performance, in: Biochemistry of Exercise, vol. 6, pp. 323–343. Ed. B. Saltin. Human Kinetics Publishers, Champaign, IL 1986.

    Google Scholar 

  49. Sams, G. H., Hargis, B. M., and Hargis, P. S., Isolation and characterization of a fatty acid binding protein in adipose tissue of Gallus domesticus. FASEB J.4 (1990) A779.

    Google Scholar 

  50. Sinclair, A. R. E., The function of distance movements in vertebrates, in: The Ecology of Animal Movement, pp. 240–258. Eds I. R. Swingland and P. J. Greenwood, Clarendon Press, Oxford 1983.

    Google Scholar 

  51. Soop, M., Bjorkman, O., Cederblad, G., hagenfeld, L., and Wahren, J., Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J. appl. Physiol.64 (1988) 2394–2399.

    PubMed  Google Scholar 

  52. Stewart, J. M., and Driedzic, W. R., Fatty acid binding proteins in teleost fish. Can. J. Zool.66 (1988) 2671–2675.

    Google Scholar 

  53. Stremmel, W., Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J. clin. Invest.81 (1988) 844–852.

    PubMed  Google Scholar 

  54. Stremmel, W., and Berk, P. D., Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding. Proc. natl Acad. Sci.83 (1986) 3086–3090.

    PubMed  Google Scholar 

  55. Stremmel, W., Strohmeyer, G., and Berk, P. D., Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc. natl Acad. Sci.83 (1986) 3584–3588.

    PubMed  Google Scholar 

  56. Suarez, R. K., and Mommsen, T. P., Gluconeogenesis in teleost fish. Can. J. Zool.65 (1987) 1869–1882.

    Google Scholar 

  57. Taylor, C. R., Scaling limits of metabolism to body size: implications for animal design, in: A Companion to Animal Physiology, pp. 161–170. Eds C. R. Taylor, K. Johansen and L. Bolis Cambridge University Press, Cambridge 1982.

    Google Scholar 

  58. Taylor, C. R., Karas, R. H., Weibel, E. R., and Hoppeler, H., Adaptive variation in the mammalian respiratory system in relation to energetic demand. Resp. Physiol.69 (1987) 1–127.

    Article  Google Scholar 

  59. Van der Horst, D. J., Lipid transport function of lipoproteins in flying insects. Biochim. biophys. Acta1047 (1990) 195–211.

    PubMed  Google Scholar 

  60. Vilaro, S., Palacin, M., Pilch, P. F., Testar, X., and Zorzano, A., Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells. Nature342 (1989) 798–800.

    Article  PubMed  Google Scholar 

  61. Wasserman, D. H., and Cherrington, A. D., Hepatic fuel metabolism during muscular work: role and regulation. Am. J. Physiol.260 (1991) E811-E824.

    PubMed  Google Scholar 

  62. Weber, J-M., Design of exogenous fuel supply systems: adaptive strategies for endurance locomotion. Can. J. Zool.66 (1988) 1116–1121.

    Google Scholar 

  63. Weber, J-M., Effect of endurance swimming on the lactate kinetics of rainbow trout. J. exp. Biol.158 (1991) 463–476.

    PubMed  Google Scholar 

  64. Weber, J.-M., Brill, R. W., and Hochachka, P. W., Mammalian metabolite flux rates in a teleost: lactate and glucose turnover in tuna. Am. J. Physiol.250 (1986) R452-R458.

    PubMed  Google Scholar 

  65. Weber, J.-M., Parkhouse, W. S., Dobson, G. P., Harman, J. C., Snow, D. H., and Hochachka, P. W., Lactate kinetics in exercising thorough-bred horses: regulation of turnover rate in plasma. Am. J. Physiol.253 (1987) R896-R903.

    PubMed  Google Scholar 

  66. Weibel, E. R., The Pathway for Oxygen. Structure and Function in the Mammalian Respiratory System. Harvard University Press, Cambridge, MA 1984.

    Google Scholar 

  67. Weibel, E. R., and Taylor, C. R., Design of the mammalian respiratory system. Respir. Physiol.44 (1981) 1–164.

    Article  Google Scholar 

  68. Weibel, E. R., Taylor, C. R., and Hoppeler, H., The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc. natl. Acad. Sci.88 (1991) 10357–10361.

    PubMed  Google Scholar 

  69. Widnell, C. C., Baldwin, S. A., Davies, A., Martin, S., and Pasternak, C. A., Cellular stress induces a redistribution of the glucose transporter. FASEB J.4 (1990) 1634–1637.

    PubMed  Google Scholar 

  70. Wolfe, R. R., Does exercise stimulate protein breakdown in humans? Isotopic approaches to the problem. Med. Sci. Sports Exercise19 (1987) 172–178.

    Google Scholar 

  71. Wolfe, R. R., Klein, S., Carraro, F., and Weber, J.-M., Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am. J. Physiol.258 (1990) E382-E389.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, J.M. Pathways for oxidative fuel provision to working muscles: Ecological consequences of maximal supply limitations. Experientia 48, 557–564 (1992). https://doi.org/10.1007/BF01920239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01920239

Key words

  • Metabolic substrates
  • aerobic capacity
  • regulation
  • glucose
  • lactate
  • fatty acid
  • migration