Advertisement

Journal of Geometry

, Volume 12, Issue 1, pp 65–68 | Cite as

A characterization of isometries of rational Euclidean spaces

  • Bijan Farrahi
Article

Abstract

We show that an injection of the rational Euclidean n-space, n≥5, which preserves the distances e, 1/2e, e an arbitrary non-zero rational number, is necessarily an isometry. Further, we show that the above characterization fails in case n=3 or 4.

Keywords

Euclidean Space Rational Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin, E.; Geometric Algebra. Interscience Publishers, New York, 1957.Google Scholar
  2. [2]
    Benz, W.; A characterization of Plane Lorentz Transformations. To be published.Google Scholar
  3. [3]
    Benz, W.: The Functional Equation of Distance Preservance in Spaces over Rings. To be published.Google Scholar
  4. [4]
    Benz, W.; Zur Charakterisierung der Lorentz-Transformationen. To be published.Google Scholar
  5. [5]
    Borsuk, K.; Multidimensional Analytic Geormetry. Polish Scientific Publishers, Warsaw, 1969.Google Scholar
  6. [6]
    Farrahi, B.; On Distance Preserving Tranformations of Euclidean-Like Planes over the Rational Field. Aeq. Math. 14 (1976)Google Scholar
  7. [7]
    Farrahi, B.; On the Group of Transformations of Constructible Euclidean Planes which Preserve a Single Distnace. Jahresber. Deutsch. Math.-Verein. (1977).Google Scholar
  8. [8]
    Farrahi, B.; On Isometries of Finite Euclidean Planes. Abh. Math. Sem. Univ. Hamburg 44 (1975).Google Scholar
  9. [9]
    Mordell, L.J.: Diophantine Equations, Academic Press, London and New York, 1969.Google Scholar
  10. [10]
    Schröder, E.M.; Eine Ergänzung zum Satz Von Beckman und Quarles. To be published.Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • Bijan Farrahi
    • 1
  1. 1.Arya-Mehr UniversityTehranIran

Personalised recommendations