Skip to main content
Log in

Bioaccumulation processes in ecosystems

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The fate of environmental pollutants — the various isotopes of elements, and inorganic or organic compounds — is a fundamental aspect of ecology and ecotoxicology, and bioaccumulation is a phenomenon often discussed in this context. Human activities have drastically altered natural concentrations of many substances in the environment and added numerous new chemicals. An understanding of the processes of bioaccumulation is important for several reasons. 1) Bioaccumulation in organisms may enhance the persistence of industrial chemicals in the ecosystem as a whole, since they can be fixed in the tissues of organisms. 2) Stored chemicals are not exposed to direct physical, chemical, or biochemical degradation. 3) Stored chemicals can directly affect an individual's health. 4) Predators of those organisms that have bioaccumulated harmful substances may be endangered by food chain effects. While former theories on the processes of bioaccumulation focused on single aspects that affect the extent of accumulation (such as the trophic level within the food chain or the lipophilicity of the chemical), modern theories are based on compartmental kinetics and the integration of various environmental interactions. Concepts include results from quantitative structure-activity relationships (QSAR), pharmacokinetics, ecophysiology and general biology, molecular genetic aspects and selection, and finally the structure of communities and man-made alterations in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D. H., Compartmental modeling and tracer kinetics, in: Lecture Notes in Biomathematics, vol. 50. Springer, Berlin 1983.

    Google Scholar 

  2. Atkins, G. L., Multicompartment Models for Biological Systems. Methuen, England 1969.

    Google Scholar 

  3. Banerjee, S., and Baughman, G. L., Bioconcentration factors and lipid solubility. Envir. Sci. Technol.25 (1991) 536–539.

    Article  CAS  Google Scholar 

  4. Barber, M. C., Suárez, L. A., and Lassiter, R. R., Modeling bioconcentration of nonpolar organic pollutants by fish. Envir. Toxic. Chem.7 (1988) 545–558.

    Article  CAS  Google Scholar 

  5. Baughman, G. L., and Paris, D. F., Microbial bioconcentration of organic pollutants from aquatic systems — a critical review. CRC Crit. Rev. Microbiol. (1982) 205–227.

  6. Bischoff, K. B., Dedrick, R. L., Zaharko, D. S., and Longstreth, J. A., Methotrexate pharmacokinetics. J. pharm. Sci.60 (1971) 1128–1133.

    Article  CAS  PubMed  Google Scholar 

  7. Bruggeman, W. A., Martron, L. B. J. M., Kooiman, D., and Hutzinger, O., Accumulation and elimination kinetics of di-, tri- and tetra-chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere10 (1981) 811–832.

    Article  CAS  Google Scholar 

  8. Bunck, C. M., Prouty, R. W., and Krynitsky, A. J., Residues of organochlorine pesticides and polychloribiphenyls in starlings (Sturnus vulgaris), from the continental United States, 1982. Envir. Monitoring Assessment8 (1987) 59–75.

    Article  CAS  Google Scholar 

  9. Bungay, P. M., Dedrick, R. L., and Guarino, M., Pharmacokinetic modeling of the dogfish shark (Squalus acanthias): distribution and urinary and biliary excretion of phenol red and its glucuronide. J. Pharmacokinetics Biopharmaceutics4 (1976) 377–388.

    Article  CAS  Google Scholar 

  10. Carson, E. R., Cobelli, C., and Finkelstein, L., The Mathematical Modeling of Metabolic and Endocrine Systems. John Wiley & Sons, New York 1983.

    Google Scholar 

  11. Caspers, N., and Schüürmann, G., Bioconcentration of xenobiotics from the chemical industry's point of view, in: Bioaccumulation in Aquatic Systems, p. 81–98. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.

    Google Scholar 

  12. Chiou, C. T., Partition coefficients of organic compounds in lipidwater systems and correlations with fish bioconcentration factors. Envir. Sci. Technol.19 (1985) 57–62.

    Article  Google Scholar 

  13. Cobelli, C., and Goffolo, G., Compartmental and noncompartmental models as candidate classes for kinetic modeling, theory and computational aspects, in: Mathematics and Computers in Biomedical Applications. Eds J. Eisenfeld and C. DeLisi. Elsevier Science Publishers B. V. (North-Holland), 1985.

    Google Scholar 

  14. Covell, D. G., Berman, M., and Charles, D., Mean residence time —theoretical development, experimental determination, and practical use in tracer analysis. Math. Biosci.72 (1984) 213–244.

    Article  Google Scholar 

  15. Dedrick, R. L., and Bischoff, K. B., Species similarities in pharmacokinetics. Fedn Proc.39 (1980) 54–59.

    CAS  Google Scholar 

  16. Dost, F. H., Die Blutspiegel-Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit. 244 pp. G. Thieme, Leipzig 1953.

    Google Scholar 

  17. Elster, H.-J., Definitionen, in: Bioakkumulation in Nahrungsketten, p. 78. Eds K. Lillelund, U. de Haar, H.-J. Elster, L. Karbe, J. Schwoerbel and W. Simonis. DFG-Forschungsbericht. Verlag Chemie, Weinheim 1987.

    Google Scholar 

  18. Erickson, R. J., and McKim, J. M., A model for exchange of organic chemicals at fish gills: flow and diffusion limitations. Aquatic Toxic.18 (1990) 175–198.

    Article  CAS  Google Scholar 

  19. Fent, K., Lovas, R., and Hunn, J., Bioaccumulation, elimination and metabolism of triphenyltin chloride by early life stages of minnowsPhoximus phoxinus. Naturwissenschaften78 (1991) 125–127.

    Article  CAS  PubMed  Google Scholar 

  20. Forth, W., Henschler, D., and Rummel, W., Allgemeine und spezielle Pharmakologie und Toxikologie; 5. Aufl. BI Wissenschaftsverlag, Mannheim 1987.

    Google Scholar 

  21. Fukuto, T. R., Physico-organic chemical approach to the mode of action of organosphosphorous insecticides. Residue Rev.25 (1969) 327–339.

    CAS  PubMed  Google Scholar 

  22. Geyer, H., Sheehan, D., Kotzias, D., Freitag, D., and Korte, F., Prediction of ecotoxicological behaviour of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel. Chemosphere11 (1982) 1121–1134.

    Article  CAS  Google Scholar 

  23. Gobas, F. A. P. C., and Mackay, D., Dynamics of hydrophobic organic chemical bioconcentration in fish. Envir. Toxic. Chem.6 (1987) 495–504.

    Article  CAS  Google Scholar 

  24. Guarino, A. M., and Anderson, J. B., Excretion of phenol red and its glucuronide in the dogfish shark. Xenobiotica6 (1976) 1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Gunkel, G., and Streit, B., Mechanisms of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus fluviatilis Müll.) and a fish (Coregonus fera Jurine). Water Res.14 (1980) 1574–1584.

    Article  Google Scholar 

  26. Haggard, H. W., The absorption, distribution and elimination of ethyl ether. Part I–V. J. biol. Chem.59 (1924) 737–751, 753–770, 771–781, 783–793, 795–802.

    Article  CAS  Google Scholar 

  27. Hammett, L. P., Some relations between reaction rates and equilibrium constants. Chem. Rev.17 (1935) 125–136.

    Article  CAS  Google Scholar 

  28. Hammett, L. P., The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. chem. Soc.59 (1937) 96–103.

    Article  CAS  Google Scholar 

  29. Hansch, C., and Fujita, T., ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J. Am. chem. Soc.86 (1964) 1616–1626.

    Article  CAS  Google Scholar 

  30. Hansch, C., Leo, A., and Taft, R. W., A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev.91 (1991) 165–195.

    Article  CAS  Google Scholar 

  31. Hansen, O. R., Hammett series with biological activity. Acta chem. scand.16 (1962) 1593–1600.

    Article  CAS  Google Scholar 

  32. Hawker, D. W., and Connell, D. W., Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxic. envir. Saf.11 (1986) 184–197.

    Article  CAS  Google Scholar 

  33. Karara, A. H., and Hayton, W. L., Pharmacokinetic model for the uptake and disposition of di-2-ethylhexyl phthalate in sheepshead minnowCyprinodon variegatus. Aquat. Toxic.5 (1984) 181–195.

    Article  CAS  Google Scholar 

  34. Karickhoff, S. W., Brown, D. S., and Scott, T. A., Sorption of hydrophobic pollutants on natural sediments and soil. Water Res.13 (1979) 241–248.

    Article  CAS  Google Scholar 

  35. Kenaga, E. E., and Goring, C. A., Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota, in: Aquatic Toxicology, vol. 707. Eds J. G. Eaton et al. ASTM, Philadelphia 1980.

    Google Scholar 

  36. Kier, L. B., and Hall, L. H., Molecular Connectivity in Chemistry and Drug Design. Academic Press, New York 1976.

    Google Scholar 

  37. Kornmayer, R., and Streit, B., Adsorption und Anreicherung von Atrazin und seinen Abbauprodukten an Flußwassersediment. Arch. Hydrobiol., Suppl.55 (1978) 186–210.

    Google Scholar 

  38. Kuhn, K., and Streit, B., Lethal and sublethal effects of fenitrothion on species of the amphipodGammarus. Verh. Dt. zool. Ges.85 (1992) 27.

    Google Scholar 

  39. Lahouti, M., and Peterson, P. J., Chromium accumulation and distribution in crop plants. J. Sci. Food Agric.30 (1979) 136–142.

    Article  CAS  Google Scholar 

  40. Lampert, W., A tracer study on the carbon turnover ofDaphnia pulex. Verh. Internat. Verein. Limnol.19 (1975) 2913–2921.

    Google Scholar 

  41. Lillelund, K., de Haar, U., Elster, H.-J., Karbe, L., Schwoerbel, J., Simonis, W., [Eds], Bioakkumulation in Nahrungsketten. DFG-Forschungsbericht. Verlag Chemie, Weinheim 1987.

    Google Scholar 

  42. Lutz, R. J., Dedrick, R. L., Mathews, H. B., Elkiung, T. E., and Anderson, M. W., A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat. Drug Metab. Disposition5 (1977) 386–396.

    CAS  Google Scholar 

  43. Mackay, D., Correlation of bioconcentration factors. Envir. Sci. Technol.16 (1982) 274–278.

    Article  CAS  Google Scholar 

  44. McKim, J. M., and Schmieder, P. K., Bioaccumulation: Does it reflect toxicity? in: Bioaccumulation in Aquatic Systems, p. 161–188. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.

    Google Scholar 

  45. Müller, F., Insektizide, Akarizide und Nematizide, in: Schadwirkungen auf Pflanzen, p. 176–188. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.

    Google Scholar 

  46. Müller, F., Fungizide, in: Schadwirkungen auf Pflanzen, p. 152–175. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.

    Google Scholar 

  47. Nagel, A., Winter, St., and Streit, B., Residues of chlorinated hydrocarbons in six European bat species. Bat Res. News32 (1990) 20–21.

    Google Scholar 

  48. Nagel, R., Metabolismus von 14C Phenol beim Goldfisch (Carassius auratus), der Regenbogenforelle (Salmo gairdneri) und der Goldorfe (Leuciscus ideus melanotus): Thesis University Mainz 1981.

  49. Nagel, R., Umweltchemikalien und Fische — Beiträge zu einer Bewertung. Habilitationsschrift, Univ. Mainz 1988.

  50. Neely, W. B., Branson, D. R., and Blau, G. E., Partition coefficients to measure bioconcentration potential of organic chemicals in fish. Envir. Sci. Technol.8 (1974) 1113–1115.

    Article  CAS  Google Scholar 

  51. Nendza, M., QSARs of bioconcentration: Validity assessment of log Pow/log BCF correlations, in: Bioaccumulation in Aquatic Systems, p. 43–66. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.

    Google Scholar 

  52. Nieboer, E., and Richardson, H. S., The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Envir. Pollution (Series B)1 (1980) 3–26.

    Article  CAS  Google Scholar 

  53. Nirmalakhandan, N., and Speece, R. E., Structure-activity relationships. Envir. Sci. Technol.22 (1988) 606–615.

    Article  CAS  Google Scholar 

  54. Odum, H. T., Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr.27 (1957) 55–112.

    Article  Google Scholar 

  55. Ogata, M., Fujisawa, K., Ogino, Y., and Mano, E., Partition coefficients as a measure of bioconcentration potential of crude oil compounds in fish and shellfish. Bull. envir. Contam. Toxic.33 (1984) 561–567.

    Article  CAS  Google Scholar 

  56. Oliver, B. G., and Niimi, A., Bioconcentration of chlorobenzenes from water to rainbow trout: correlation with partition coefficients and environmental residues. Envir. Sci. Technol.17 (1983) 287–291.

    Article  CAS  Google Scholar 

  57. Opperhuizen, A., Bioconcentration and biomagnification: is a distinction necessary? in: Bioaccumulation in Aquatic Systems, p. 67–80. Eds R. Nagel and R. Loskill. Verlag Chemie, Weinheim 1991.

    Google Scholar 

  58. Opperhuizen, A., Velde, E. W., van den, Gobas, F. A. P. C., Liem, D. A. K., and Steen, J. M. D. van den, Relationships between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere14 (1985) 1871–1896.

    Article  CAS  Google Scholar 

  59. Ormerod, W. E., Hydrolysis of benzolylcholine derivatives by cholinesterase in serum. Biochem. J.54 (1953) 701–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pearson, R. G., Hard and soft acids and bases. J. Am. chem. Soc.85 (1963) 3533–3539.

    Article  CAS  Google Scholar 

  61. Piiper, J., and Scheid, P., Model analysis of gas transfer in fish gills, in: Fish Physiology, p. 229–262. Eds W. S. Hoar and D. J. Randall. Academic Press Inc., New York 1984.

    Google Scholar 

  62. Piiper, J., and Scheid, S., Model analysis of gas transfer in fish gills, in: Fish Physiology, vol. X, Gills. Academic Press, New York 1984.

    Google Scholar 

  63. Reeves, R. D., Macfarlane, R. M., and Brooks, R. R., Accumulation of nickel and zinc by western north American genera containing serpentine-tolerant species. Am. J. Bot.70 (1983) 1297–1303.

    Article  CAS  Google Scholar 

  64. Siré, E.-O., and Streit, B., A multi-input-output linear system theory for pharmacokinetic and bioaccumulation of xenobiotics. J. theor. Biol., submitted (1992).

  65. Södergren, A., and Svensson, Bj., Uptake and accumulation of DDT and PCB byEphemera danica (Ephemeroptera) in continuous-flow systems. Bull. envir. Contam. Toxic.9 (1973) 345–350.

    Article  Google Scholar 

  66. Still, E. R., and Williams, R. J. P., Potential methods for selective accumulation of nickel(II)ions by plants. J. inorg. Biochem.13 (1980) 35–40.

    Article  CAS  Google Scholar 

  67. Streit, B., Experimentelle Untersuchungen zum Stoffhaushalt vonAncylus fluviatilis (Gastropoda — Basommatophora). 2. Untersuchungen über Einbau und Umsatz des Kohlenstoffs. Arch. Hydrobiol., Suppl.48 (1975) 1–46.

    Google Scholar 

  68. Streit, B., Aufnahme, Anreicherung und Freisetzung organischer Pestizide bei bentischen Süßwasserinvertebraten. 1. Reversible Anreicherung von Atrazin aus der wässrigen Phase. Arch. Hydrobiol., Suppl.55 (1978) 1–23.

    Google Scholar 

  69. Streit, B., Uptake, accumulation and release of organic pesticides by benthic invertebrates. 2. Reversible accumulation of lindane, paraquat and 2,4-D from aqueous solution by invertebrates and detritus. Arch. Hydrobiol., Suppl.55 (1979) 324–348.

    Google Scholar 

  70. Streit, B., Uptake, accumulation and release of organic pesticides by benthic invertebrates. 3. Distribution of14C-atrazine and14C-lindane in an experimental 3-step food chain microcosm. Arch. Hydrobiol., Suppl.55 (1979) 374–400.

    Google Scholar 

  71. Streit, B., Untersuchungen zum Wasseraustausch mittels3H2O zwischen Süßwassertieren und ihrer Umgebung. Revue suisse Zool.87 (1980) 927–935.

    Article  Google Scholar 

  72. Streit, B., Water turnover rates and half life times in animals studied by use of labelled and non-labelled water. Minireview. Comp. Biochem. Physiol.72 (1982) 445–454.

    Article  CAS  Google Scholar 

  73. Streit, B., Effects of high copper concentrations on soil invertebrates (earthworms and orbatid mites): Experimental results and a model. Oecologia (Berlin)64 (1984) 381–388.

    Article  Google Scholar 

  74. Streit, B., Chemikalien im Wasser: Experimente und Modelle zur Bioakkumulation bei Süßwassertieren, in: Limnologie aktuell, Band 1: Biologie des Rheins, p. 107–130. Eds R. Kinzelbach and G. Friedrich. G. Fischer, Stuttgart 1990.

    Google Scholar 

  75. Streit, B., Lexikon Ökotoxikologie. XIX+731 pp., Verlag Chemie, Weinheim 1991; korrigierter Nachdruck 1992.

    Google Scholar 

  76. Streit, B., Zur Ökologie der Tierwelt im Rhein. Verhandlungen der Naturforschenden Gesellschaft BAsel102 (1992) in press.

  77. Streit, B., Kissner, R., and Sterf, B., Aufnahme und Proteinbindungen von Schwermetallen (Pb and Cd) in Süßwassermollusken (Ancylus fluviatilis). Verh. Dt. zool. Ges.80 (1987) 299–300.

    Google Scholar 

  78. Streit, B., Krüger, Ch., Lahner, G., Kirsch, S., Hauser, G., and Diehl, B., Aufnahme und Speicherung von Schwermetallen durch Regenwürmer in verschiedenen Böden. Umweltwissenschaften und Schadstoff-Forschung2(1) (1990) 10–13.

    Article  CAS  Google Scholar 

  79. Streit, B., and Schwoerbel, J., Experimentelle Untersuchungen über die Akkumulation von Herbiziden bei benthischen Süsswassertieren. Verh. Ges. Ökol. Göttingen 1976, 371–383.

  80. Streit, B., Siré, E.-O., Kohlmaier, G. H., Badeck, F.-W., and Winter, St., Modelling ventilation efficiency of teleost fish gills for pollutants with high affinity to plasma proteins. Ecol. Modelling57 (1991) 237–262.

    Article  CAS  Google Scholar 

  81. Streit, B., and Stumm, W., Chemical properties of metals and the process of bioaccumulation in terrestrial plants, in: Plants as Biomonitors for Heavy Metal Pollution of the Terrestrial Environment. Ed. B. Markert. Verlag Chemie, Weinheim, New York 1992, in press.

    Google Scholar 

  82. Sunda, W. G., Trace metal interactions with marine phytoplankton. Biol. Oceanography6 (1991) 411–442.

    Google Scholar 

  83. Taft, R. W., The general nature of the proportionality of polar effects of substituent groups in organic chemistry. J. Am. chem. Soc.75 (1953) 4231–4238.

    Article  CAS  Google Scholar 

  84. Teal, J. M., Community metabolism in a temperate cold spring. Ecol. Monogr.227 (1957) 283–302.

    Article  Google Scholar 

  85. Thomann, R. V., Bioaccumulation model of organic chemical distribution in aquatic food chains. Envir. Sci. Technol.23 (1989) 699–707.

    Article  CAS  Google Scholar 

  86. Trautmann, A., and Streit, B., Sorption von Lindan (gamma-Hexachlorcyclohexan) anNitzschia actinastroides (LEMM.) v. GOOR (Diatomeae) unter verschiedenen Wachstumsbedingungen. Arch. Hydrobiol., Suppl.55 (1979) 349–372.

    Google Scholar 

  87. Tulp, M. Th. M., and Hutzinger, O., Some thoughts on aqueous solubilities and partition coefficients of PCB, and the mathematical correlation between bioaccumulation and physico-chemical properties. Chemosphere10 (1978) 849–860.

    Article  Google Scholar 

  88. Van Gestel, C. A. M., and Ma, W.-C., Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotoxic. envir. Saf.15 (1988) 289–297.

    Article  Google Scholar 

  89. Veith, G. D., and Kosian, P., Estimating bioconcentration potential from octanol/water partition coefficients, in: Physical Behaviour of PCBs in the Great Lakes. Eds D. Mackay et al.. Ann Arbor Science Publishers, Ann Arbor 1983.

    Google Scholar 

  90. Wagner, J. G., Biopharmaceutics and Relevant Pharmacokinetics. Drug Intelligence Publications, Hamilton, Illinois, 1971.

    Google Scholar 

  91. Wallnöfer, P. R., and Engelhardt, G., Schadstoffe, die aus dem Boden aufgenommen werden, in: Schadwirkungen auf Pflanzen, p. 95–117. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.

    Google Scholar 

  92. Wanner, O., Egli, Th., Fleischmann, Th., Lanz, K., Reichert, P., and Schwarzenbach, R. P., Behavior of the insecticides disulfoton and thiometon in the Rhine river: A chemodynamic study. Envir. Sci. Technol.23 (1989) 1232–1242.

    Article  CAS  Google Scholar 

  93. Weyers, B., Die Bleibelastung der Amsel — Ursache, Dynamik, Anwendung. Thesis, Aachen 1989.

  94. Widmark, E. M. P., and Tandberg, J., Über die Bedingungen für die Akkumulation indifferenter Narkotika (Theoretische Berechnungen). Biochem. Z.147 (1924) 358–369.

    CAS  Google Scholar 

  95. Winter, St., and Streit, B., Organochlorine compounds in a threestep terrestrial food chain. Chemosphere (1992) in press.

  96. Woodwell, G. M., Toxic substances and ecological cycles. Sci. Am.216 (1967) 24–31.

    Article  CAS  PubMed  Google Scholar 

  97. Woodwell, G. M., Wurster, C. F. Jr, and Isaacson, P. A., DDT residues in an East Coast Estuary: A case of biological concentration of a persistent insecticide. Science156 (1967) 821–824.

    Article  CAS  PubMed  Google Scholar 

  98. Wright, Ph. J., and Weber, J. H., Biosorption of inorganic tin and methyltin compounds by estuarine macroalgae. Envir. Sci. Technol.25 (1991) 287–294.

    Article  CAS  Google Scholar 

  99. Xue, H.-B., Stumm, W., and Sigg, L., The binding of heavy metals to algal surfaces. Wat. Res.22 (1988) 917–926.

    Article  CAS  Google Scholar 

  100. Ziegler, H., Weg der Schadstoffe in der Pflanze, in: Schadwirkungen auf Pflanzen, p. 35–46. Eds B. Hock and E. F. Elstner. BI Wissenschaftsverlag, Mannheim 1988.

    Google Scholar 

  101. Zok, S., Görge, G., Kalsch, W., and Nagel, R., Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio rerio). Sci. total Envir.109/110 (1991) 410–421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streit, B. Bioaccumulation processes in ecosystems. Experientia 48, 955–970 (1992). https://doi.org/10.1007/BF01919142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919142

Key words

Navigation