Advertisement

Experientia

, Volume 48, Issue 10, pp 932–941 | Cite as

Intercellular communication in smooth muscle

  • J. D. Huizinga
  • L. W. C. Liu
  • M. G. Blennerhassett
  • L. Thuneberg
  • A. Molleman
Reviews

Abstract

The functioning of a group of cells as a tissue depends on intercellular communication; an example is the spread of action potentials through intestinal tissue resulting in synchronized contraction. Recent evidence for cell heterogeneity within smooth muscle tissues has renewed research into cell coupling.Electrical coupling is essential for propagation of action potentials in gastrointestinal smooth muscle.Metabolic coupling may be involved in generation of pacemaker activity. This review deals with the role of cell coupling in tissue function and some of the issues discussed are the relationship between electrical synchronization and gap junctions, metabolic coupling, and the role of interstitial cells of Cajal in coupling.

Key words

Gap junctions intercellular junctions field coupling canine colon dye coupling electrical coupling metabolic coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amezcua, J. L., Palmer, R. M., de Souza, B. M., and Moncada, S., Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br. J. Pharmac.97 (1989) 1119–1124.Google Scholar
  2. 2.
    Barajas-López, C., Berezin, I., Daniel, E. E., and Huizinga, J. D., Pacemaker activity recorded in interstitial cells of Cajal of the gastrointestinal tract. Am. J. Physiol.257 (1989) C830-C835.PubMedGoogle Scholar
  3. 3.
    Bardakjian, B. L., and Diamant, N. E., Electronic models of oscillator to oscillator communication, in: Cell Interaction and Gap Junctions. Eds N. Sperelakis and W. C. Cole. CRC Press. Boca Raton 1989.Google Scholar
  4. 4.
    Bauer, A. J., Publicover, N. G., and Sanders, K. M., Origin and spread of slow waves in canine gastric antral circular muscle. Am. J. Physiol.249 (1985) G800-G806.PubMedGoogle Scholar
  5. 5.
    Beny, J. L., and Connat, J. L., An electron microscopic study of smooth muscle cell dye coupling in the pig coronary arteries. Circ. Res.70 (1992) 49–55.PubMedGoogle Scholar
  6. 6.
    Berezin, I., Huizinga, J. D., and Daniel, E. E., Interstitial cells of Cajal in the canine colon: a special communication network at the inner border of the circular muscle. J. comp. Neurol.273 (1988) 42–51.PubMedGoogle Scholar
  7. 7.
    Berezin, I., Huizinga, J. D., Farraway, L., and Daniel, E. E., Innervation of interstitial cells of Cajal by vasoactive intestinal polypeptide containing nerves in canine colon. Can. J. Physiol. Pharmac.68 (1990) 922–932.Google Scholar
  8. 8.
    Blennerhassett, M. G., and Garfield, R. E., Effect of gap junction number and permeability on intercellular coupling in rat myometrium. Am. J. Physiol.261 (1991) C1001-C1009.PubMedGoogle Scholar
  9. 9.
    Blennerhassett, M. G., Kannan, M. S., and Garfield, R. E., Functional characterization of cell-to-cell coupling in cultured rat aortic smooth muscle. Am. J. Physiol.252 (1987) C555-C569.PubMedGoogle Scholar
  10. 10.
    Brown, H. F., Electrophysiology of the sinoatrial node. Physiol. Rev.62 (1982) 505–530.PubMedGoogle Scholar
  11. 10a.
    Cheung, D. W., and Daniel, E. E., Comparative study of the smooth muscle layers of the rabbit duodenum. J. Physiol., Lond.309 (1980) 13–27.Google Scholar
  12. 11.
    Cole, W. C., and Garfield, R. E., Evidence for physiological regulation of myometrial gap junction permeability. Am. J. Physiol.251 (1986) C411-C420.PubMedGoogle Scholar
  13. 12.
    Cole, W. C., Garfield, R. E., and Kirkaldy, J. S., Gap junctions and direct intercellular communication between rat uterine smooth muscle cells. Am. J. Physiol.249 (1985) C20-C31.PubMedGoogle Scholar
  14. 13.
    Conklin, J. L., and Du, C., Pathways of slow-wave propagation in proximal colon of cats. Am. J. Physiol.258 (1990) G894-G903.PubMedGoogle Scholar
  15. 13a.
    Connor, J. A., Kreulen, D., Prosser, C. L., and Weigel, R., Interaction between longitudinal and circular muscle in intestine of cat. J. Physiol., Lond.273 (1977) 665–689.Google Scholar
  16. 14.
    Daniel, E. E., Gap junctions and smooth muscle, in: Cell to Cell Communication, pp. 149–184. Ed W. C. De Mello. CRC Press, Boca Raton 1991.Google Scholar
  17. 15.
    Daniel, E. E., Daniel, V. P. Duchon, G., Garfield, R. E., Nichols, M., Malhotra, S. K., and Oki, M., Is the nexus necessary for cell-to-cell coupling of smooth muscle? J. membr. Biol.28 (1976) 207–239.PubMedGoogle Scholar
  18. 16.
    Daniel, E. E., and Posey Daniel, V., Neuromuscular structures in opossum esophagus: role of interstitial cells of Cajal. Am. J. Physiol.246 (1984) G305-G315.PubMedGoogle Scholar
  19. 17.
    Gabella, G., Smooth muscle cell junctions and structural aspects of contraction. Br. med. Bull.35 (1979) 213–218.PubMedGoogle Scholar
  20. 18.
    Garfield, R. E., Cell-to-Cell communication in smooth muscle, in: Calcium and contractile activity, pp. 143–150. Eds A. K. Grover and E. E. Daniel. The Humana Press, Clifton 1985.Google Scholar
  21. 19.
    Garfield, R. E., Blennerhassett, M. G., and Miller, S. M., Control of myometrial contractility: role and regulation of gap junctions. Oxford Reviews of Reproductive Biology10 (1988) 436–490.PubMedGoogle Scholar
  22. 20.
    Garfield, R. E., Thilander, G., Blennerhassett, M. G., and Sakai, N., An update on the question: are gap junctions necessary for cell to cell coupling of smooth muscle? Can. J. Physiol. Pharmac. (1992) in press.Google Scholar
  23. 21.
    Hallett, M. B., The unpredictability of cellular behavior: trivial or of fundamental importance to cell biology? Perspect. Biol. Med.33 (1989) 110–119.PubMedGoogle Scholar
  24. 22.
    Hertzberg, E. L., Lawrence, T. S., and Gilula, N. B., Gap junctional communication. A. Rev. Physiol.43 (1981) 479–491.Google Scholar
  25. 23.
    Hooper, M. L., and Subak Sharpe, J. H., Metabolic cooperation between cells. Int. Rev. Cytol.69 (1981) 45–104.PubMedGoogle Scholar
  26. 24.
    Huizinga, J. D., Action potentials in gastrointestinal smooth muscle. Can. J. Physiol. Pharmacol.69 (1981) 1133–1142.Google Scholar
  27. 25.
    Huizinga, J. D., Berezin, I., Daniel, E. E., and Chow, E., Inhibitory innervation of colonic smooth muscle cells and interstitial cells of Cajal. Can. J. Physiol. Pharmac.68 (1990) 447–454.Google Scholar
  28. 26.
    Huizinga, J. D., and Chow, E., Electrotonic current spread in colonic smooth muscle. Am. J. Physiol.254 (1988) G702-G710.PubMedGoogle Scholar
  29. 27.
    Huizinga, J. D., and Den Hertog, A., Inhibition of fundic strips from guinea-pig stomach: the effect of theophylline on the membrane potential, muscle contraction and ion fluxes. Eur. J. Pharmacol.57 (1979) 1–11.PubMedGoogle Scholar
  30. 28.
    Huizinga, J. D., Farraway, L., and Den Hertog, A., Effect of voltage and cyclic AMP on frequency of slow wave type action potentials in colonic smooth muscle. J. Physiol., Lond.442 (1991) 31–45.Google Scholar
  31. 29.
    Huizinga, J. D., Shin, A., and Chow, E., Electrical coupling and pacemaker activity in colonic smooth muscle. Am. J. Physiol.255 (1988) C653-C660.PubMedGoogle Scholar
  32. 30.
    Kanna, M. S., and Daniel, E. E., Formation of gap junctions by treatment in vitro with potassium conductance blockers. J. Cell Biol.78 (1978) 338–348.PubMedGoogle Scholar
  33. 31.
    Kannan, M. S., Jager, L. P., Daniel, E. E., and Garfield, R. E., Effects of 4-aminopyridine and tetraethylammonium chloride on the electrical activity and cable properties of canine tracheal smooth muscle. J. Pharmac. exp. Ther.227 (1983) 706–715.Google Scholar
  34. 32.
    Larson, D. M., Haudenschild, C. C., and Beyer, E. C., Gap junction messenger RNA expression by vascular wall cells. Circ. Res.66 (1990) 1074–1080.PubMedGoogle Scholar
  35. 33.
    Lash, J. A., Critser, E. S., and Pressler, M. L., Cloning of a gap junctional protein from vascular smooth muscle and expression in two-cell mouse embryos. J. biol. Chem.265 (1990) 13113–13117.PubMedGoogle Scholar
  36. 34.
    Lawrence, T. S., Beers, W. H., and Gilula, N. B., Transmission of hormonal stimulation by cell-to-cell communication. Nature272 (1978) 501–506.PubMedGoogle Scholar
  37. 35.
    Liu, L. W. C., Daniel, E. E., and Huizinga, J. D., Colonic circular muscle without the network of interstitial cells of Cajal can generate slow waves through different mechanisms. Gastroenterology99 (II) (1990) 1215. (Abstract)Google Scholar
  38. 36.
    Liu, L. W. C., Daniel, E. E., and Huizinga, J. D., Excitability of canine colon circular muscle disconnected from the network of interstitial cell of Cajal. Can. J. Physiol. Pharmac.70(2) (1992) 289–295.Google Scholar
  39. 37.
    Meda, P., Chanson, M., Pepper M., Giordano, E., Bosco, D., Traub, O., Willecke, K., el Aoumari, A., Gros, D., Beyer, E. C., Orci, L., and Spray, D. C., In vivo modulation of connexin, 43 gene expression and junctional coupling of pancreatic B-cells. Exp. Cell Res.192 (1991) 469–480.PubMedGoogle Scholar
  40. 38.
    Miller, S. M., Garfield, R. E., and Daniel, E. E., Improved propagation in myometrium associated with gap junctions during parturition. Am. J. Physiol.256 (1989) C130-C141.PubMedGoogle Scholar
  41. 39.
    Moore, L. K., Beyer, E. C., and Burt, J. M., Characterization of gap junction channels in A7r5 vascular smooth muscle cells. Am. J. Physiol.260 (1991) C975-C981.PubMedGoogle Scholar
  42. 40.
    Perez Armendariz, M., Roy, C., Spray, D. C., and Bennett, M. V., Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys. J.59 (1991) 76–92.PubMedGoogle Scholar
  43. 41.
    Peterson, O. H., and Findlay, I., Electrophysiology of the pancreas. Physiol. Rev.67 (1987) 1054–1116.PubMedGoogle Scholar
  44. 42.
    Risek, B., Guthrie, S., Kumar, N. B., Modulation of gap junction transcript and protein expression during pregnancy in the rat. J. Cell Biol.110 (1990) 269–282.PubMedGoogle Scholar
  45. 43.
    Rumessen, J. J., and Thuneberg, L., Interstitial cells of Cajal in human small intestine. Ultrastructural identification and organization between the main smooth muscle layers. Gastroenterology100 (1991) 1417–1431.PubMedGoogle Scholar
  46. 44.
    Safranyos, R. G., and Caveney, S., Rates of diffusion of fluorescent molecules via cell-to-cell membrane channels in a developing tissue. J. Cell Biol.100 (1985) 736–747.PubMedGoogle Scholar
  47. 45.
    Seltzer, Z., and Devor, M., Ephaptic transmission in chronically damaged peripheral nerves. Neurology29 (1979) 1061–1064.PubMedGoogle Scholar
  48. 46.
    Serio, R., Barajas-López, C., Daniel, E. E., Berezin, I., and Huizinga, J. D., Slow-wave activity in colon: role of network of submucosal interstitial cells of Cajal. Am. J. Physiol.260 (1991) G636-G645.PubMedGoogle Scholar
  49. 47.
    Sims, S. M., Daniel, E. E., and Garfield, R. E., Improved electrical coupling in uterine smooth muscle is associated with increased numbers of gap junctions at parturition. J. gen. Physiol.80 (1982) 353–375.PubMedGoogle Scholar
  50. 48.
    Sperelakis, N., Propagation mechanisms in heart. A. Rev. Physiol.41 (1979) 441–457.Google Scholar
  51. 49.
    Sperelakis, N., Electric field model: An alternate mechanism for cell-to-cell propagation in cardiac muscle and smooth muscle. J. Gastroint. Motil.3 (1991) 1–19.Google Scholar
  52. 50.
    Spray, D. C. and Bennett, M. V., Physiology and pharmacology of gap junctions. A. Rev. Physiol.47 (1985) 281–303.Google Scholar
  53. 51.
    Spray, D. C., and Burt, J. M., Structure-activity relations of the cardiac gap junction channel. Am. J. Physiol.258 (1990) C195-C205.PubMedGoogle Scholar
  54. 52.
    Spray, D. C., Harris, A. L., and Bennett, M. V., Voltage dependence of junctional conductance in early amphibian embryos. Science204 (1979) 432–434.PubMedGoogle Scholar
  55. 53.
    Suenson, M., Ephaptic impulse transmission between ventricular myocardial cells in vitro. Acta physiol. scand.120 (1984) 445–455.PubMedGoogle Scholar
  56. 54.
    Tang, C. M., Orkand, P. M., and Orkand, R. K., Coupling and uncoupling of amphibian neuroglia. Neurosci. Lett.54 (1985) 237–242.PubMedGoogle Scholar
  57. 55.
    Thuneberg, L., Interstitial cells of Cajal: intestinal pacemaker cells? Adv. Anat. Embryol. Cell Biol.71 (1982) 1–130.PubMedGoogle Scholar
  58. 56.
    Thuneberg, L., Interstitial Cells of Cajal, in: Handbook of Physiology, The Gastrointestinal System, pp. 349–386. Eds G. S. Schultz, J. D. Wood and B. B. Rauner. American Physiological Society, Bethesda, U.S.A. 1989.Google Scholar
  59. 57.
    Veenstra, R. D., and DeHaan, R. L., Measurement of single channel currents from cardiac gap junctions. Science233 (1986) 972–974.PubMedGoogle Scholar
  60. 58.
    Zamir, O., and Hanani, M., Intercellular dye-coupling in intestinal smooth muscle. Are gap junctions required for intercellular coupling? Experientia46 (1990) 1002–1005.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • J. D. Huizinga
    • 1
    • 2
  • L. W. C. Liu
    • 1
    • 2
  • M. G. Blennerhassett
    • 3
  • L. Thuneberg
    • 4
  • A. Molleman
    • 1
    • 2
  1. 1.Intestinal Disease Research UnitMcMaster UniversityHamiltonCanada
  2. 2.Department of Biomedical SciencesMcMaster UniversityHamiltonCanada
  3. 3.Department of PathologyMcMaster UniversityHamiltonCanada
  4. 4.Department of AnatomyUniversity of Copenhagen, Panum InstituteCopenhagen(Denmark)

Personalised recommendations