Journal of Geometry

, Volume 14, Issue 2, pp 103–107 | Cite as

Thin sets and common transversals

  • Meir Katchalski
Article

Abstract

An m-transversal of a family of convex sets in Euclidean n-dimensional space Rn is an m-dimensional flat which intersects each member of the family. This paper establishes some results dealing with (n−1)-transversals in Rn. The results are related to a theorem of Hadwiger on 1-transversals in the plane.

Keywords

Common Transversal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

lReferences

  1. [1]
    Danzer, L., Grünbaum, B. and Klee, V.: Helly's theorem and its relatives. Proc. Symp. Pure Math. 7(Convexity), Amer. Math. Soc. (1963), 101–180.Google Scholar
  2. [2]
    Grünbaum, B.: On a theorem of Santalo. Pacific J. Math. 5(1955), 351–359.Google Scholar
  3. [3]
    Grünbaum, B.: On common transversals. Archiv der Math. 9(1958), 465–469.Google Scholar
  4. [4]
    Grünbaum, B.: Common transversals for families of sets. J. London Math. Soc. 35(1960), 408–416.Google Scholar
  5. [5]
    Grünbaum, B.: Convex Polytopes. Interscience, New York 1967.Google Scholar
  6. [6]
    Hadwiger, H.: Uber Eibereiche mit gemeinsamer Treffgeraden. Portugal Math. 16(1957), 23–29.Google Scholar
  7. [7]
    Hadwiger, H., Debrunner, H., and Klee, V.: Combinatorial Geometry in the Plane. Holt,Rinehart & Winston, New York, 1964.Google Scholar
  8. [8]
    Santalo, L.: A theorem on sets of parallelepipeds with parallel edges. Publ. Inst. Mat. Univ. Nac. Litoral (Rosario) 2(1940), 49–60 (Spanish).Google Scholar
  9. [9]
    Santalo, L.: Supplement to the note: A theorem on sets of parallelepipeds with parallel edges. Publ. Inst. Mat. Univ. Nac. Litoral (Rosario) 3(1942), 202–210. (Spanish).Google Scholar
  10. [10]
    Rademacher, H., and Schoenberg, I.: Helly's theorem on convex domains and Tchebycheff's approximation problem. Can.J.Math.2(1950), 245–256.Google Scholar

Copyright information

© BirkhÄuser Verlag 1980

Authors and Affiliations

  • Meir Katchalski
    • 1
  1. 1.Technion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations