, Volume 14, Issue 1, pp 215–219 | Cite as

Programming with a special class of nonlinear functionals

  • S. M. Sinha
  • Vijay Wadhwa


In this paper we consider programming problems in which the constraints are linear and the objective function is the product or the quotient of two functions, each function being a homogeneous form of first degree with a constant added to it.

With the proper assumptions of concavity or convexity of the homogeneous forms, this nonlinear programming problem is reduced to that of maximization of a concave function over a convex constraint set.


Objective Function Programming Problem Nonlinear Programming Special Class Concave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In der vorliegenden Arbeit werden Programme untersucht, bei denen die Nebenbedingungen linear sind und die Zielfunktion als Produkt bzw. Quotient zweier Funktionen darstellbar ist, die bis auf additive Konstanten homogen von 1. Grad sind. Bei geeigneten Konvexitäts- oder Konkavitätsannahmen für diese Funktionen lassen sich solche Programme auf die Maximierung einer konkaven Funktion in einem konvexen Gebiet zurückführen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarwal, S. P.: Contributions to the theory of fractional programming, Ph. D. Thesis, Delhi University, Delhi 1967.Google Scholar
  2. Bector, C. R.: Indefinite quadratic programming with standard errors in objective, Cahiers du Centre d'Etudes de Recherche Operationnelle,10, 1968, 247–253.Google Scholar
  3. Charnes, A., andW. W. Cooper: Programming with linear fractional functionals, Nav. Res. Log. Quart.,9, 1962, 181–186.Google Scholar
  4. Eisenberg, E.: A note on semi-definite matrices, Research Report,9, O. R. Center, University of California, Berkeley 1961.Google Scholar
  5. Swarup, Kanti: Programming with indefinite quadratic function with linear constraints, Cahiers du Centre d'Etudes de Recherche Operationnelle,8, 1966, 132–136.Google Scholar
  6. ——: Indefinite quadratic programming, Cahiers du Centre d'Etudes de Recherche Operationnelle,8, 1966b, 223–234.Google Scholar
  7. Kelley, J. E.: The cutting plane method for solving convex programs, J. Soc. Indust. Appl. Math.,8, 1960, 703–712.Google Scholar
  8. Rosen, J. B.: The gradient projection method for nonlinear programming Part II — Nonlinear constraints, J. Soc. Indust. Appl. Math.,9, 1961, 514–532.Google Scholar
  9. Sinha, S. M., andS. S. Lal: On indefinite quadratic programming, Journal of Mathematical Sciences,3, 1968, 71–74.Google Scholar
  10. Zoutendijk, G.: Methods of feasible directions, New York 1960.Google Scholar

Copyright information

© Physica-Verlag 1970

Authors and Affiliations

  • S. M. Sinha
    • 1
  • Vijay Wadhwa
    • 1
  1. 1.Faculty of MathematicsUniversity of DelhiDelhi-7India

Personalised recommendations