, Volume 14, Issue 1, pp 2–26 | Cite as

Sensitivity analysis methods for a crop-mix problem in linear programming

  • J. K. Sengupta
  • B. C. Sanyal


Four different methods of analyzing the sensitivity of the optimal solution of a crop-mix problem in linear programming, e. g., (a) variability analysis for second-best and third-best solutions, (b) perturbation analysis around a specific optimal basis, (c) the sensitivity coefficient approach, and (d) the method of fractile criterion by which a specified fractile of the distribution of profits is maximized, are investigated here. The objective is to compare the different operational methods of sensitivity analysis applied to an empirical economic problem.


Sensitivity Analysis Operational Method Economic Problem Perturbation Analysis Sensitivity Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die vorliegende Arbeit behandelt vier Methoden zur Untersuchung der Sensitivität der optimalen Lösung eines „crop-mix“-Problems der linearen Programmierung: a) „variability analysis“ für zweit- und drittbeste Lösungen, b) „perturbation analysis“ der optimalen Basis, c) das „sensitivity-coefficient“-Verfahren und d) die „fractile-criterion“-Methode, durch die ein bestimmter Teil der Gewinnverteilung maximiert wird. Ziel der Arbeit ist ein Vergleich der Methoden bezüglich ihrer Anwendung auf empirische ökonomische Probleme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babbar, M. M.: Statistical Approach in Planning Production Programs for Interdependent Activities. Unpublished Ph. D. dissertation, Iowa State University, ISU Library, Ames, 1953.Google Scholar
  2. Bereanu, B.: On Stochastic Linear Programming: TheLaplace Transform of the Distribution on the Optimum and Applications. Jrn. of Mathem. Analysis and Applications,15, 1966, pp. 280–294.Google Scholar
  3. Bracken, J., andR. M. Soland: Statistical Decision Analysis of Stochastic Linear Programming Problems. Nav. Res. Log. Quart.13, 1966, pp. 205–226.Google Scholar
  4. Charnes, A., andW. W. Cooper: Deterministic Equivalents for Optimizing and Satisficing Under Chance Constraints. Operations Research,11, 1963, pp. 18–39.Google Scholar
  5. Elderton, W. P.: Frequency Curves and Correlation. Washington, 1953.Google Scholar
  6. Ferguson, T.: Rules for Rejection of Outliers. Review of Internat. Statist. Institute,29, No. 3, 1961, pp. 29–43.Google Scholar
  7. Gumbel, E. J.: Statistics of Extrems. New York, 1958.Google Scholar
  8. Hanson, M. A.: Errors and Stochastic Variations in Linear Programming. Australian Journ. of Statist.,2, 1960, pp. 41–46.Google Scholar
  9. Kataoka, S.: A Stochastic Programming Model. Econometrica,31, 1963, pp. 181–196.Google Scholar
  10. Kendall, M. G.: The Advanced Theory of Statistics,1, London, 1943.Google Scholar
  11. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. New York, 1959.Google Scholar
  12. Moriguti, S.: Extremal Properties of Extreme Value Distributions. Annals of Mathem. Statistics,22, 1951, pp. 523–536.Google Scholar
  13. Pillai, K. C. S., andK. V. Ramachandran: On the Distribution of the Ratio of the i-th Observation in an Ordered Sample from a Normal Population to an Independent Estimate of the Standard Deviation. Annals of Mathem. Statistics,25, 1954, pp. 565–572.Google Scholar
  14. Prekopa, A.: On the Probability Distribution of the Optimum of a Random Linear Program. SIAM Journ. of Control,14, 1966, pp. 211–222.Google Scholar
  15. Rao, C. R.: Linear Statistical Inference and its Applications, New York, 1965.Google Scholar
  16. Roy, A. D.: Safety First and the Holding of Assets. Econometrica,20, 1952, pp. 431–449.Google Scholar
  17. Saaty, T. L.: The Number of Vertices of a Polyhedron. Amer. Mathem. Monthly,62, 1955, pp. 326 to 331.Google Scholar
  18. ——: Approximation to the Value of the Objective Function in Linear Programming by the Method of Partitions. Operations Research,4, 1956, pp. 352–353.Google Scholar
  19. --: Mathematical Methods of Operations Research, New York, 1959.Google Scholar
  20. --, andK. W. Webb: Sensitivity and Renewals in Scheduling Aircraft Overhaul. Proc. of the Second Intern. Conference on Operations Research, 1961, pp. 708–715.Google Scholar
  21. Sengupta, J. K.: The Stability of Truncated Solutions of Stochastic Linear Programming. Econometrica,34, 1966, pp. 77–104.Google Scholar
  22. --: The Extremes of Extreme Value Solutions Under Risk Programming. Sent for publication.Google Scholar
  23. --: Econometric Models of Risk Programming. Indian Economic Journal, Annual Econometric Number, 1968.Google Scholar
  24. —— andG. Tintner: On the Stability of Solutions Under Error in Stochastic Linear Programming. Metrika,9, 1965, pp. 47–60.Google Scholar
  25. --, andJ. H. Portillo-Campbell: A Fractile Approach to Linear Programming Under Risk. To be published in Management Science, 1970.Google Scholar
  26. --, andG. Tintner: The Approach of Stochastic Linear Programming: A Critical Appraisal. Sent for publication.Google Scholar
  27. Shackle, G. L. S.: Uncertainty in Economics, Cambridge, 1955.Google Scholar
  28. Tintner, G.: Stochastic Linear Programming with Applications to Agricultural Economics. In: Proceedings of Second Symposium in Linear Programming, Washington,1, 1955, pp. 197–228.Google Scholar
  29. United States Department of Agriculture: Agricultural Prices, Agricultural Marketing Service, Crop Reporting Board, Washington, Monthly Bulletin (1960–1965).Google Scholar
  30. Wetherill, G. B.: Sequential Methods in Statistics, London, 1966.Google Scholar

Copyright information

© Physica-Verlag 1970

Authors and Affiliations

  • J. K. Sengupta
    • 1
  • B. C. Sanyal
    • 2
  1. 1.Iowa State UniversityAmes
  2. 2.Department of EconomicsIowa State UniversityAmes

Personalised recommendations