Advertisement

Journal of Geometry

, Volume 21, Issue 1, pp 66–96 | Cite as

R2-planes with 3-dimensional automorphism group fixing precisely a line

  • Hansjoachim Groh
  • Martin F. Lippert
  • Hans -Joachim Pohl
Article

Abstract

It is shown that the class of these R2-planes consists of those listed by STRAMBACH 1970, those added by OSTMANN 1975, and those added by GROH 1981. This last class consists of sums of two hyperbola planes. Furthermore, the isomorphism types are determined. All investigations are carried out for the much more general situation of an R2-plane with Δ-invariant screen, Δ ≅ R2.

Keywords

Automorphism Group General Situation Hyperbola Plane Isomorphism Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BO 78]
    BETTEN, D.; OSTMANN, A.: Wirkungen und Geometrien der Gruppe L2 × R. Geometriae Dedicata 7 (1978) 141–162.Google Scholar
  2. [Br 09]
    BROUWER, L.E.J.: Die Theorie der endlichen kontinuierlichen Gruppen, unabhängig von den Axiomen von Lie. Math. Ann. 67 (1909) 246–267.Google Scholar
  3. [En 78]
    ENGELKING, R.: Dimension Theory. North-Holland, Amsterdam-Oxford-New York 1978.Google Scholar
  4. [Gr 79]
    GROH, H.: R2-planes with 2-dimensional point transitive automorphism group. Abh. Math. Sem. Hamburg 48 (1979) 171–202.Google Scholar
  5. [Gr 81]
    —: Pasting of R2-planes. Geometriae Dedicata 11 (1981) 69–98.Google Scholar
  6. [Gr 82]
    —: R2-planes with point transitive 3-dimensional collineation group. Indag. Math. 44 (1982) 173–182.Google Scholar
  7. [Gr 83]
    -: Isomorphism types of arc planes. Accepted by Abh. Math. Sem. Hamburg. THD-Preprint Nr. 533 (Februar 1980)Google Scholar
  8. [GLP 82]
    GROH, H.; LIPPERT, M.F.; POHL, H.-J.: R2-planes with 3-dimensional automorphism group fixing precisely a line. THD-Preprint Nr. 710 (Oktober 1982).Google Scholar
  9. [Ha 71]
    HALDER, H.-R.: Dimension der Bahnen lokal kompakter Gruppen. Arch. Math. 22 (1971) 302–303.Google Scholar
  10. [Ha 73]
    —: Über Bahnen lokalkompakter Gruppen. Geometriae Dedicata 2 (1973) 101–109.Google Scholar
  11. [Li 82]
    LIPPERT, M.F.: R2-Ebenen mit einer Hyperbelgruppe als Automorphismengruppe und genau einer Fixgeraden. Diplomarbeit, Darmstadt (1982).Google Scholar
  12. [Os 75]
    OSTMANN, A.: Salzmannebenen mit L2 × R als Kollineationsgruppe und genau einer Fixgeraden. Diplomarbeit, Tübingen (1975).Google Scholar
  13. [Po 82]
    POHL, H.-J.: R2-Ebenen mit einer Hyperbelgruppe als Automorphismengruppe und genau einer Fixgeraden (Isomorphietypen). Diplomarbeit, Darmstadt (1982).Google Scholar
  14. [Sa 67a]
    SALZMANN, H.: Topological planes. Advances in Mathematics 2 (1967) 1–60.Google Scholar
  15. [Sa 67b]
    —: Kollineationsgruppen ebener Geometrien. Math. Z. 99 (1967) 1–15.Google Scholar
  16. [Sk 57]
    SKORNJAKOV, L.A.: Curve systems in the plane (Russian) Trudy Moskov. Mat. Obšč. 6 (1957) 135–164.Google Scholar
  17. [St 67]
    STRAMBACH, K.: Salzmann-Ebenen mit hinreichend vielen Punkt-oder Geradenspiegelungen. Math. Z. 99 (1967) 247–269.Google Scholar
  18. [St 70]
    —: Zur Klassifikation von Salzmannebenen mit 3-dimensionaler Kollineationsgruppe II. Abh. Math. Sem. Hamburg 34 (1970) 159–169.Google Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • Hansjoachim Groh
    • 1
  • Martin F. Lippert
    • 1
  • Hans -Joachim Pohl
    • 1
  1. 1.FB 4 - AG 2 Geometrie und AlgebraTechnische Hochschule DarmstadtDarmstadt

Personalised recommendations