Advertisement

Journal of Geometry

, Volume 20, Issue 1, pp 1–7 | Cite as

On affine planes over A n k -quasigroups

  • Juraj šiftar
Article

Keywords

Affine Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Belousov,V.D.: Tranzitivnye distributivnye kvazigruppy, Ukrainskij Mat.Ž. X,No.1(1958), 13–22.Google Scholar
  2. [2]
    Galkin,V.M.: Levodistributivnye kvazigruppy konečnego porjadka, Mat. Issledovanija,“Kvazigruppy i lupy”, “štiinca”,Kišinev,1978.,43–53.Google Scholar
  3. [3]
    Hughes,D.R.,Piper,F.C.: Projective planes,Springer,1973.Google Scholar
  4. [4]
    Ostrom,T.G.: Linear transformations and collineations of translation planes, J.Algebra14(1970),405–416.CrossRefGoogle Scholar
  5. [5]
    Puharev,N.K.: Ob Ank-algebrah i reguljarnyh konečnyh ploskostjah, Sibirskij Mat.Ž. VI,4 (1965),892–899.Google Scholar
  6. [6]
    Puharev,N.K.: O postroenii Ank-algebr, Sibirskij Mat.Ž. VII,3 (1966),724–727.Google Scholar
  7. [7]
    Puharev,N.K.: Geometričeskie voprosy nekotoryh medialnih kvazigrupp, Sibirskij Mat.Ž. IX,4(1968),891–897.Google Scholar
  8. [8]
    Szamkolowicz,L.: On the problem of existence of finite regular planes, Colloq. Math.9(1962),245–250.Google Scholar
  9. [9]
    Toyoda,K.: On axioms of mean transformations and automorphic transformations of abelian groups, Tohoku Math. J.46(1940),239–251.Google Scholar
  10. [10]
    Toyoda, K.: On affine geometry of abelian groups, Proc. Imp.Acad. Tokyo 16,2(1940),161–164.Google Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • Juraj šiftar
    • 1
  1. 1.Department of MathematicsUniversity of ZagrebZagrebYugoslavia

Personalised recommendations