Zeitschrift für Operations Research

, Volume 22, Issue 1, pp 33–41 | Cite as

On some relations between a dual pair of multiple objective linear programs

  • H. Isermann
Abhandlungen Serie A: Theorie


This paper is a contribution to the theory of multiple objective linear programming. Existence and duality properties for multiple objective linear programs are developed which contain the fundamental existence and duality results of linear programming as special cases. Several implications of the duality results will be indicated.


Dual Pair Duality Result Duality Property Multiple Objective Linear Program Fundamental Existence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In diesem Beitrag werden einige Existenz- und Dualitätsaussagen für lineare Programme mit mehreren Zielfunktionen (Vektoroptimierungsprobleme) vorgestellt. Es wird gezeigt, daß diese Aussagen die Existenz- und Dualitätsaussagen der linearen Programmierung als Spezialfälle enthalten.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dantzig, G.B.: Linear Programming and Extensions. Princeton, New Jersey 1963.Google Scholar
  2. Evans, J.P., andR. E. Steuer: A Revised Simplex Method for Linear Multiple Objective Programs. Mathematical Programming5 (1), 1973, 54–72.CrossRefGoogle Scholar
  3. Isermann, H.: Proper Efficiency and the Linear Vector Maximum Problem. Operations Research22 (1), 1974, 189–191.Google Scholar
  4. -: Ein Algorithmus zur Lösung linearer Vektormaximumprobleme, In: Proceedings in Operations Research5, hrsg. vonJ Kohlas, O. Seifert, P. Stähly undH.-J. Zimmermann. Würzburg-Wien 1976, 55–65.Google Scholar
  5. —: The Relevance of Duality in Linear Multiple Objective Programming: In: North-Holland/TIMS Studies in the Management Sciences, Vol. 6, 1977, 241–262.Google Scholar
  6. Krekó, B.: Linear Programming, London 1968.Google Scholar
  7. Mangasarian, O.L.: Nonlinear Programming, New York 1969.Google Scholar
  8. Simonnard, M.: Linear Programming, Englewood Cliffs, New Jersey 1966.Google Scholar
  9. Tschernikow, S.N.: Lineare Ungleichungen, Berlin 1971.Google Scholar
  10. Zeleny, M.: Compromise Programming. In: Multiple Criteria Decision Making, ed. byJ.L. Cochrane andM. Zeleny. Columbia, South Carolina 1973, 262–301.Google Scholar
  11. -: Linear Multiobjective Programming, Berlin-Heidelberg-New York 1974.Google Scholar

Copyright information

© Physica-Verlag 1978

Authors and Affiliations

  • H. Isermann
    • 1
  1. 1.Fachbereich WirtschaftswissenschaftUniversität des SaarlandesSaarbrücken 11

Personalised recommendations