Advertisement

Устойчивостъ квадратурных формул гауссаякоъи и неустойчивостъ сходимости в среднем интерполяционного процесса лагранжа при расширении матрицы узлов интерполировбания

  • Д. Л. Берман
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Литература

  1. [1]
    Д. Л. Берман, К теории интерполяции,Дан. СССР,163 (3) (1965), 551–554.Google Scholar
  2. [2]
    L. Fejér, Über Interpolation,Gött. Nachr., (1916), 65–91.Google Scholar
  3. [3]
    Д.Л. Берман, Исследование интерполяционного процесса Эрмита-Фейера,ДАН СССР,187 (2) (1969), 241–244.Google Scholar
  4. [4]
    P. Erdős andP. Turán, On interpolation. I,Annals of Math.,38 (1937), 142–155.Google Scholar
  5. [5]
    J. Shohat, On the convergence properties of Lagrange interpolation based on the zeros of orthogonal Tchebycheff polynomials,Annals of Math.,38 (1937), 758–769.MathSciNetGoogle Scholar
  6. [6]
    Н. С. Бахвалов,Чuсленные меmо∂ы, т. 1, «Наука» (1973).Google Scholar
  7. [7]
    F. W. Luttmann andT. J. Rivlin, Some numerical experiments in the theory of polynomial interpolation,IBM I. Res. Develop.,2 (1965), 187–191.Google Scholar
  8. [8]
    L. Fejér, Mechanische Quadraturen mit positiven Cotesschen Zahlen,Math. Zeitsch.,37 (1933), 287–309.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • Д. Л. Берман
    • 1
  1. 1.Ленинград-238СССР

Personalised recommendations