Advertisement

Zeitschrift für Operations Research

, Volume 26, Issue 1, pp 211–241 | Cite as

Bibliography in fractional programming

  • S. Schaible
Papers Serie A: Theory

Abstract

A bibliography in fractional programming is provided which contains 551 references. It was attempted to include all publications in this area of nonlinear programming as they have appeared in more than 45 years now.

Keywords

Nonlinear Programming Fractional Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Es wird eine Bibliographie zur Quotientenprogrammierung veröffentlicht, die 551 Titel enthält. Es wurde versucht, alle Beiträge zu diesem Gebiet der nichtlinearen Programmierung zu berücksichtigen, das nun seit mehr als 45 Jahren erforscht wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadie, J.M., and A.C. Williams: Dual and Parametric Methods in Decomposition. In: Graves, R., and P. Wolfe (eds.),Recent Advances in Mathematical Programming, McGraw-Hill, New York, 1963, 149–158.Google Scholar
  2. Abrham, J., and R.N. Buie: Duality in Continuous Fractional Programming.Utilitas Mathematica 17, 1980, 35–44.Google Scholar
  3. Abrham, J., and S. Luthra: Comparison of Duality Models in Fractional Linear Programming.ZOR — Zeitschrift für Operations Research 21, 1977, 125–130.Google Scholar
  4. Aggarwal, S.P.: Stability of the Solution to a Linear Fractional Functional Programming Problem.Zeitschrift für Angewandte Mathematik und Mechanik 46, 1966, 343–349.Google Scholar
  5. —: A Note on Quasiconvex Programming.Metrika 12, 1968, 97–105.Google Scholar
  6. —: Parametric Linear Fractional Functional Programming.Metrika 12, 1968, 106–114.Google Scholar
  7. —: Standard Error Fractional Functional Programming.Instanbul Üniversitesi Fen Fakültesi Mecmuasi, A Serisi 30, 1968, 45–51.Google Scholar
  8. —: Analyses of the Solution to a Linear Fractional Functional Programming.Metrika 16, 1970, 9–26.Google Scholar
  9. —: Quadratic Fractional Functional Programming with Non-Linear Constraints (Italian).Ricerca Operativa 2, 1972, 51–53.Google Scholar
  10. —: Indefinite Quadratic Fractional Programming.Ekonomicko-Matematicky Obzor 8, 1972, 191–199.Google Scholar
  11. —: Variation in Parameters of Quadratic Fractional Functional Programming.Revue Belge de Statistique d'Informatique et de Recherche Opérationelle 11 (4), 1972, 3–12.Google Scholar
  12. —: Transportation Technique for Quadratic Fractional Programming.Revue Belge de Statistique d'Informatique et de Recherche Opérationelle 12 (2), 1972, 3–7.Google Scholar
  13. —: Upper Bounds and Quadratic Fractional Functional Programming.Revue Belge de Statistique d'Informatique et de Recherche Opérationelle 12 (4), 1973, 17–21.Google Scholar
  14. —: Indefinite Quadratic Fractional Programming with a Quadratic Constraint.Cahiers du Centre d'Etudes de Recherche Opérationelle 15, 1973, 405–410.Google Scholar
  15. —: Quadratic Fractional Functional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 15, 1973, 157–165.Google Scholar
  16. Aggarwal, S.P., and S. Arora: A Special Class of Non-Linear Fractional Functional Programming Problems.SCIMA, Journal of Management Science and Applied Cybernetics 3, 1974, 30–39.Google Scholar
  17. Aggarwal, S.P., and O. Parkash: Duality in General Linear Fractional Functional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 20, 1978, 75–81.Google Scholar
  18. Aggarwal, S.P., and P.C. Saxena: Duality Theorems for Fractional Functional Programming with Quadratic Constraint.Ekonomicko Matematicky Obzor. 10, 1974, 86–92.Google Scholar
  19. —: Duality Theorems for Non-Linear Fractional Programs.Zeitschrift für Angewandte Mathematik und Mechanik 55, 1975, 523–525.Google Scholar
  20. —: The Decomposition Method for Linear Programming Problems with Linear and Fractional Target Functions.Przeglad Statyst 23, 1976, 211–219.Google Scholar
  21. —: A Class of Fractional Functional Programming Problems.New Zealand Operational Research 7, 1979, 79–90.Google Scholar
  22. Aggarwal, S.P., and I.C. Sharma: Maximization of the Transmission Rate of a Discrete Constant Channel.Unternehmensforschung 14, 1970, 152–155.Google Scholar
  23. Aggarwal, S.P., and K. Swarup: Fractional Functional Programming with a Quadratic Constraint.Operations Research 14, 1966, 950–956.Google Scholar
  24. Aggarwal, V., S. Chandra, and K.P. Nair: Discounted Stochastic Ratio Games.Journal of Optimization Theory and Applications 27, 1977, 27–37.Google Scholar
  25. Agrawal, S.C.: On Integer Solutions to Linear Fractional Functional Programming Problems.Acta Ciencia Indica 1, 1975, 203–208.Google Scholar
  26. —: On Integer Solutions to Linear Fractional Functional by a Branch and Bound Technique.Acta Ciencia Indica 2, 1976, 75–78.Google Scholar
  27. —: An Alternative Method on Integer Solutions to Linear Fractional Functionals by a Branch and Bound Technique.Zeitschrift für Angewandte Mathematik und Mechanik 57, 1977, 52–53.Google Scholar
  28. Agrawal, S.C., and M. Chand: On Integer Solutions to Complementary Programming Problems with Linear Fractional Objective Function by a Branch and Bound Technique.Acta Ciencia Indica 4, 1978, 283–289.Google Scholar
  29. —: On Intersection Cuts in Fractional Interval Integer Programming.Acta Ciencia Indica 5, 1979, 140–142.Google Scholar
  30. —: A Note on the Sum of Linear and Fractional Interval Programming.Revista de Informatica e Investigacion Operativa 20, 1980, 33–36.Google Scholar
  31. Agrawal, S.C., and R.K. Verma: p-Variables Replacement in Linear Fractional Functional Programming.Acta Ciencia Indica 6, 1980, 95–103.Google Scholar
  32. Almogy, Y., and O. Levin: Parametric Analysis of a Multi-stage Stochastic Shipping Problem. In: Lawrence, J. (Ed.),Operational Research '69, Tavistock Publications, London, 1970, 359–370.Google Scholar
  33. —: A Class of Fractional Programming Problems.Operations Research 19, 1971, 57–67.Google Scholar
  34. —: The Fractional Fixed-Charge Problems.Naval Research Logistics Quarterly 18, 1971, 307–315.Google Scholar
  35. Anand, P.: Dual and Parametric Methods in Decomposition for Linear Fractional Programs.Studia Scientarium Mathematicarum Hungarica 6, 1971, 267–275.Google Scholar
  36. —: Decomposition Procedure for Linear Fractional Programs with Upper Bounds.Zeitschrift für Angewandte Mathematik and Mechanik 53, 1973, 635–636.Google Scholar
  37. Anand, P., and K. Swarup: The Procedure for Local Separable Programming.Zeitschrift für Angewandte Mathematik und Mechanik 50, 1970, 320–321.Google Scholar
  38. Anzai, Y.: On Integer Fractional Programming.Journal of the Operations Research Society of Japan 17, 1974, 49–66.Google Scholar
  39. Arbuzova, N.I.: Interdependence of the Stochasticε-Stabilities of Linear and Linear Fractional Programming Problems of a Special Form (Russian).Ekonom. i Mat. Metody 4, 1968, 108–110.Google Scholar
  40. Arisawa, S., and S.E. Elmaghraby: Optimal Time-Cost Trade Offs in GERT-Networks.Management Science 18, 1972, 589–599.Google Scholar
  41. Armstrong, R., et al.: Effective Solution of Non-Convex Multi-Objective Ratio Goal Problems.Research Report CCS 390, Center for Cybernetic Studies, University of Texas, Austin, 1980.Google Scholar
  42. Arora, S.R.: A Set Partitioning Problem with Linear Fractional Objective Function.Indian Journal of Pure and Applied Mathematics 8, 1977, 961–968.Google Scholar
  43. —: A Note on Fractional Fixed Charge Problems.New Zealand Operational Research 5, 1977, 66–71.Google Scholar
  44. Arora, S.R., and S.P. Aggarwal: Dynamic Programming Approach to Linear Fractional Functional Programming.Revue Belge de Statistique d'Informatique et de Recherche Opérationelle 17, 1977, 10–23.Google Scholar
  45. —: Linear Fractional Functional Programming with a Parameter in an Activity Vector.Economic Computation and Economic Cybernetics Studies and Research 3, 1977, 37–56.Google Scholar
  46. Arora, S.R., and M.C. Puri: Enumeration Technique for the Set Covering Problem with a Linear Fractional Functional as the Objective Function.Zeitschrift für Angewandte Mathematik und Mechanik 57, 1977, 181–186.Google Scholar
  47. Arora, S.R., M.C. Puri and K. Swarup: The Set Covering Problem with Linear Fractional Functionals.Indian Journal of Pure and Applied Mathematics 8, 1977, 578–588.Google Scholar
  48. —: Cutting Plane Technique for Set Covering Problem with Linear Fractional Functional.Zeitschrift für Angewandte Mathematik und Mechanik 57, 1977, 597–602.Google Scholar
  49. Artjuhin, A.V.: An Algorithm for the Solution of the Distribution Problem of Parametric Fractional Linear Programming (Russian).Izdat. “Ilim”, Frunze, 1973, 30–36.Google Scholar
  50. -: Some Applications of Parametric Fractional Linear Programming (Russian).Izdat., “Ilim”, Frunze, 1973, 37–54.Google Scholar
  51. Ashton, D.J., and D.R. Atkins: Multi-Criteria Programming for Financial Planning.Journal of the Operational Research Society 30, 1979, 259–270.Google Scholar
  52. Avriel, M.:Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood-Cliffs, N.J., 1976.Google Scholar
  53. Avriel, M., et al.: Introduction to Concave and Generalized Concave Functions. In: Schaible, S., and W.T. Ziemba, (eds.),Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981, 21–50.Google Scholar
  54. Avriel, M., and S. Schaible: Second-Order Characterizations of Pseudo-Convex Functions.Mathematical Programming 14, 1978, 170–185.Google Scholar
  55. Awerbuch, S., J.G. Ecker and W.A. Wallace: A Note: Hidden Nonlinearities in the Application of Goal Programming.Management Science 22, 1976, 918–920.Google Scholar
  56. Babayev, D.A.: Mathematical Models for Optimal Timing of Drilling on Multilayer Oil and Gas Fields.Management Science 21, 1975, 1361–1369.Google Scholar
  57. —: A General Fractional Programming Problem (Russian).Central. Èkonom.-Mat. Inst., Akad. Nauk SSSR, Moscow, 1976.Google Scholar
  58. Bakhshi, H.C.: Sensitivity Analysis in Linear Fractional Functional Programming Problems with Extreme Point Restriction.SCIMA, Journal of Management Science and Applied Cybernetics 8, 1979, 6–15.Google Scholar
  59. Bakhshi, H.C., and M.C. Puri: An Efficient Technique for Extreme Point Mathematical Programming Problems.Cahiers du Centre d'Etudes de Recherche Opérationelle 21, 1979, 257–268.Google Scholar
  60. Baluta, M., V. Dobrescu and G. Paun: Algorithm for Solving a Combinatorial Problem of Optimal Selection.Economic Computation and Economic Cybernetics Studies and Research 1, 1979, 87–95.Google Scholar
  61. Banker, R.D.: A Gametheoretic Approach to Measuring Efficiency.European Journal of Operational Research 5, 1980, 262–266.Google Scholar
  62. Banker, R.D., et al.: A Bi-Extremal Principle for Frontier Estimation and Efficiency Evaluations.Management Science 27, 1981, 1370–1382.Google Scholar
  63. Bansal, S.: Absolute Value Linear Fractional Programming.Cahiers du Centre D'Etudes de Recherche Opérationelle 23, 1981, 43–52.Google Scholar
  64. Barlow, R.E., and F. Proschan:Mathematical Theory of Reliability. Wiley, New York, 1965.Google Scholar
  65. Barrodale, I.: Best Rational Approximation and Strict Quasiconvexity.SIAM J. of Numerical Analysis 10, 1973, 8–12.Google Scholar
  66. Bazaara, M.S., and C.M. Shetty:Nonlinear Programming, Theory and Algorithms. J. Wiley, New York, 1979.Google Scholar
  67. Beale, E.M.L.: Fractional Programming with Zero-One Variables. In: Fiacco, A.V., and K.O. Kortanek (Eds.),Extremal Methods and Systems Analysis. Springer, Berlin, 1980, 430–432.Google Scholar
  68. Becher, O.: Das Problem der optimalen Routenwahl einer Transporteinheit bei Beschäftigung mit Gelegenheitsfahrten.Zeitschrift für die gesamte Staatswissenschaft 121, 1965, 196–221.Google Scholar
  69. Bector, C.R.: Nonlinear Fractional Functional Programming with Nonlinear Constraints.Zeitschrift für Angewandte Mathematik und Mechanik 48, 1968, 284–286.Google Scholar
  70. —: Duality in Fractional and Indefinite Programming.Zeitschrift für Angewandte Mathematik und Mechanik 48, 1968, 418–420.Google Scholar
  71. —: Programming Problems wiht Convex Fractional Functions.Operations Research 16, 1968, 383–391.Google Scholar
  72. —: Some Aspects of Nonlinear Indefinite Fractional Functional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 12, 1970, 22–34.Google Scholar
  73. —: Indefinite Quadratic Fractional Functional Programming.Metrika 18, 1971, 21–30.Google Scholar
  74. —: Duality in Nonlinear Fractional Programming.ZOR — Zeitschrift für Operations Research 17, 1973, 183–193.Google Scholar
  75. —: On Convexity, Pseudo-Convexity and Quasi-Convexity of Composite Functions.Cahiers du Centre d'Etudes de Recherche Opérationelle 15, 1973, 411–428.Google Scholar
  76. —: Duality in Linear Fractional Programming.Utilitas Mathematica 4, 1973, 155–168.Google Scholar
  77. —: A Note on a Dual Fractional Program.Cahiers du Centre d'Etudes de Recherche Opérationelle 16, 1974, 107–115.Google Scholar
  78. Bector, C.R., M.K. Bector and J.E. Klassen: Duality for a Nonlinear Programming Problem.Utilitas Mathematica 11, 1977, 87–99.Google Scholar
  79. Bector, C.R., and S.K. Bhatt: A Linearization Technique for Solving Interval Linear Fractional Programs. In: Proceedings of the Fifth Manitoba Conference on Numerical Mathematics, Congressus Numerantium. No. XVI, Winnipeg,Utilitas Mathematica, 1976, 221–229.Google Scholar
  80. —: Pseudo-Monotonic Interval Programming.Naval Research Logistics Quarterly 25, 1978, 309–314.Google Scholar
  81. Bector, C.R., S. Chandra and T.R. Gulati: Duality for Complex Nonlinear Fractional Programming Over Cones. In: Proceedings of the Third Manitoba Conference on Numerical Mathematics, Winnipeg,Utilitas Mathematica 1974, 87–103.Google Scholar
  82. -: Duality for Fractional Control Problems. In: Proceedings of Fifth Manitoba Conference on Numerical Mathematics, Winnipeg,Utilitas Mathematica, 1976, 231–241.Google Scholar
  83. —: A Lagrangian Approach to Duality for Complex Nonlinear Fractional Programming Over Cones.Mathematische Operationsforschung und Statistik, Series Optimization 8, 1977, 17–25.Google Scholar
  84. Bector, C.R., and T.R. Grover: Minimizing Certain Nonconvex Quadratic Fractional Programs by Ranking the Extreme Points. In: Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, Winnipeg,Utilitas Mathematica, 1973, 95–100.Google Scholar
  85. Bector, C.R., and P.L. Jolly: Pseudo Monotonic Integer Programming. In:Proceedings of the Manitoba Conference on Numerical Mathematics and Computing, 1979, 211–218.Google Scholar
  86. Bedi, M.K.: Duality for a Special Class of Quasi-Convex Programming Problems.Zeitschrift für Angewandte Mathematik und Mechanik 58, 1978, 165–166.Google Scholar
  87. Behringer, F.A.: Lexicographic Quasiconcave Multiobjective Programming.ZOR — Zeitschrift für Operations Research 21, 1977, 103–116.Google Scholar
  88. Belen'Kij, A.S.: Minimax Problem with Linear Constraints.Automation and Remote Control 41, 1980, 562–568; translated fromAvtom. Telemekh 4 (Russian), 1980, 151–158.Google Scholar
  89. Bell, E.J.: Primal-Dual Decomposition Programming.Ph.D. Thesis, Operations Research Center, University of California, Berkeley, 1965.Google Scholar
  90. Bellman, R.:Dynamic Programming. Princeton University Press, Princeton, 1957.Google Scholar
  91. Belykh, V.M., and M.K. Gavurin: Minimization Algorithm for a Linear-Fractional Function (Russian).Vestnik Leningradskogo Universiteta, Matematika, Mehanika, Astronomija 4, 1980, 10–15.Google Scholar
  92. Bereanu, B.: Distribution Problems in Stochastic Linear Programming and Minimum Risk Solutions, (Roumanian).Dissertation Abstract, Faculty of Mathematics and Mechanics, Bucharest, 1963.Google Scholar
  93. —: Solutions of Minimum Risk in Linear Programming (Roumanian).Analele Universitatii Bucuresti, Seria Stiintele Naturii, Matematica-Mecanica 13, 1964, 121–140.Google Scholar
  94. -: Programme de Risque Minimal en Programmation Linéaire Stochastique.Compte Revue Academie Science, Paris, 1964, 981–983.Google Scholar
  95. —: Decision Regions and Minimum Risk Solutions in Linear Programming. In: Prekopa, A. (ed.),Colloquium on Applications of Mathematics to Economics, Hungarian Academy of Sciences, Budapest, 1965, 37–42.Google Scholar
  96. -: Quasi-Convexity, Strict Quasi-Convexity and Pseudo-Convexity of Composite Objective Functions.Revue Francaise d'Automatique, Informatique et Recherche Opérationelle, 1972, 15–26.Google Scholar
  97. Bergthaller, C.A.: Quadratic Equivalent of the Minimum Risk Problem.Revue Roumaine de Mathematiques Pures et Appliquees 15, 1970, 17–23.Google Scholar
  98. Bessent, A., and W. Bessent: Determining the Comparative Efficiency of Schools through Data Envelopement Analysis.Research Report CCS 361, Center for Cybernetic Studies, University of Texas, Austin, December 1979.Google Scholar
  99. Bessent, A., et al.: An Application of Mathematical Programming to Assess Managerial Efficiency in the Houston Independent School District.Research Report CCS 373, Center for Cybnertic Studies, University of Texas, Austin, November. 1981.Google Scholar
  100. Bhatia, D., and B. Gupta: Efficiency in Certain Nonlinear Fractional Vector Maximization Problems.Indian Journal of Pure and Applied Mathematics 11, 1980, 669–672.Google Scholar
  101. Bhatia, H.L.: Solid Transportation Problem in Linear Fractional Programming.Revue Belge de Statistique d'Informatique et de Recherche Opérationelle 18, 1978, 35–50.Google Scholar
  102. Bhatt, S.K.: Sequential Unconstrained Minimization Technique for a Non-Convex Program.Cahiers du Centre d'Etudes de Recherche Opérationelle 15, 1973, 429–435.Google Scholar
  103. —: An Existence Theorem for a Fractional Control Problem.Journal of Optimization Theory and Applications 11, 1973, 379–385.Google Scholar
  104. —: Generalized Pseudo-Convex Programming in Real Banach Space and Duality.Cahiers du Centre d'Etudes de Recherche Opérationelle 16, 1974, 7–16.Google Scholar
  105. —: Linearization Technique for Linear Fractional and Pseudo-Monotonic Programs Revisited.Cahiers du Centre d'Etudes de Recherche Opérationelle 23, 1981, 53–56.Google Scholar
  106. Bitran, G.R.: Experiments with Linear Fractional Problems.Naval Research Logistics Quarterly 26, 1979, 689–693.Google Scholar
  107. Bitran, G.R., and T.L. Magnanti: Duality and Sensitivity Analysis for Fractional Programs.Operations Research 24, 1976, 675–699.Google Scholar
  108. Bitran, G.R., and A.G. Novaes: Linear Programming with a Fractional Objective Function.Operations Research 21, 1973, 22–29.Google Scholar
  109. Blau, R.A.: Decomposition Technique for the Chebychev Problem.Operations Research 21, 1973, 1157–1162.Google Scholar
  110. Böhm, H.H.: Die Maximierung der Kapitalrentabilität.Zeitschrift für Betriebswirtschaft 32, 1962, 489–512.Google Scholar
  111. Borwein, J.M.: Fractional Programming Without Differentiability.Mathematical Programming 11, 1976, 283–290.Google Scholar
  112. Bradley, S.P., and S.C. Frey: Fractional Programming with Homogeneous Functions.Operations Research 22, 1974, 350–357.Google Scholar
  113. Brender, D.M.: A Surveilance Model for Recurrent Events.IBM Watson Research Center Report, 1963.Google Scholar
  114. Bühler, W.: A Note on Fractional Interval Programming.Zeitschrift für Operations Research 19, 1975, 29–36.Google Scholar
  115. Bühler, W., und R. Dick: Stochastische lineare Optimierung. Teil I,Zeitschrift für Betriebswirtschaft 42, 1972, 667–692; Teil II,Zeitschrift für Betriebswirtschaft 43, 1973, 101–120.Google Scholar
  116. Bühler, W., and N. Newinger: On the Convergence of Martos' Hyperbolic Programming Algorithm.Arbeitsbericht, Lehrstuhl für Unternehmensforschung, Rheinisch — Westfälische Technische Hochschule, Aachen, 1973.Google Scholar
  117. Cabot, A.V.: Maximizing the Sum of Certain Quasiconcave Functions Using Generalized Benders Decomposition.Naval Research Logistics Quarterly 25, 1978, 473–482.Google Scholar
  118. Callahan, J.R., and C.R. Bector: Optimization with General Stochastic Objective Functions.Proceedings of the Third Manitoba Conference on Numerical Mathematics, 1973, 127–137.Google Scholar
  119. Cambini, A.: Un Algoritmo per il Massimo del Quoziente di Due Forme Affini con Vincoli Lineari.Paper No. A-42, Department of Operations Research, University of Pisa, Italy, 1977.Google Scholar
  120. —: Sulla Programmazione Lineare Frazionaria Stocastica.Paper No. A-50, Dipartimento di Recerco Operativa e Scienze Statistiche, Università di Pisa, Italy, 1978.Google Scholar
  121. —: An Algorithm for a Special Class of Fractional Programs. In: Schaible, S., and W.T. Ziemba (eds.),Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981, 491–508.Google Scholar
  122. Cambini, A., L. Martein and L. Pellegrini: Decomposition Methods and Algorithms for a Class of Non-linear Programming Problems.First Meeting AFCET-SMF Palaiseau, Ecole Polytechnique Palaiseau Paris, 1978, 179–189.Google Scholar
  123. Černov, J.P.: Several Problems of Parametric Fractional Linear Programming (Russian).Optimal. Planirovanie Vyp. 16, 1970, 98–111.Google Scholar
  124. —: A Certain Problem of Parametric Linear-Fractional Programming (Russian).Izvestija Akademii Nauk Kirgizskoi SSR 3, 1970, 20–27.Google Scholar
  125. —: The Problems of Fractional Programming with Linear Separable and Quadratic Functions (Russian).Èconom. i Mat. Metody 7, 1971, 721–732.Google Scholar
  126. —: An Application of the δ-Method to the Solution of Fractional Programming Problems with Separable Functions (Russian).Mathematical Methods for the Solution of Economic Problems (Suppl. to Èkonom. i Mat. Metody 3), 1972, 68–73.Google Scholar
  127. Černov, J.P., and E.G. Lange: A Transport Problem of Fractional Programming (Russian).Optimal. Planirovanie Vyp. 16, 1970, 112–132.Google Scholar
  128. Černov, J.P., and E.G. Lange: An Application of the Method of Successive Computations to the Solution of a Certain Class of Fractional Concave Programming Problems (Russian).Mathematical Methods of Solution of Economic Problems (Suppl. to Èkonom. i Mat. Metody 5), 1974, 37–49.Google Scholar
  129. Černov, J.P., E.G. Lange and A. Žusupbaev: Application of the Successive Calculation Method to Solving a Production Allocation Problem with a Fractional-Convex Functional (Russian).Izvestija Akademii Nauk Kirgizskoi SSR 2, 1979, 27–34.Google Scholar
  130. Chadha, S.S.: A Decomposition Principle for Fractional Programming.Opsearch 4, 1967, 123–132.Google Scholar
  131. —: An Extension of Upper Bounded Technique for a Linear Fractional Program.Metrika 20, 1969, 25–35.Google Scholar
  132. —: A Linear Fractional Functionals Program with Variable Coefficients.Revue de la Faculte des Sciences de l'Universite d'Instanbul, Serie A 36, 1971, 7–13.Google Scholar
  133. —: A Dual Fractional Program.Zeitschrift für Angewandte Mathematik und Mechanik 51, 1971, 560–561.Google Scholar
  134. —: A Linear Fractional Functional Program with a Two Parameter Objective Function.Zeitschrift für Angewandte Mathematik und Mechanik 51, 1971, 479–481.Google Scholar
  135. —: A Generalized Upper Bounded Technique for a Linear Fractional Program.Metrika 20, 1973, 25–35.Google Scholar
  136. —: Duality Theorems for a Generalized Linear and Linear Fractional Program.Cahiers du Centre d'Etudes de Recherche Opérationelle 15, 1973, 167–173.Google Scholar
  137. —: A Decomposition Principle for a Generalized Linear and Piece-wise Linear Program.Trabajos de Estadistica e Investigacion Operativa 28, 1977, 85–92.Google Scholar
  138. Chadha, S.S., and J.M. Gupta: Sensitivity Analysis of the Solution of a Generalized Linear and Piece-Wise Linear Program.Cahiers du Centre d'Etudes de Recherche Opérationelle 18, 1976, 309–321.Google Scholar
  139. Chadha, S.S., and R.N. Kaul: A Dual Nonlinear Program.Metrika 19, 1972, 18–22.Google Scholar
  140. —: A Linear Fractional Functional Program with Variable Coefficients.Journal of Mathematical Sciences 7, 1972, 15–20.Google Scholar
  141. Chadha, S.S., and S. Shivpuri: A Simple Class of Parametric Linear Fractional Functionals Programming.Zeitschrift für Angewandte Mathematik und Mechanik 53, 1973, 644–646.Google Scholar
  142. —: Parametrization of a Generalized Linear and Piece-wise Linear Programming Problem.Trabajos de Estadisticae Investigation Operativa 28, 1977, 151–160.Google Scholar
  143. —: Enumerative Technique for an Extreme Point Fractional Program.European Journal of Operational Research 4, 1980, 54–59.Google Scholar
  144. Chambers, D.: Programming the Allocation of Funds Subject to Restrictions on Reported Results.Operational Research Quarterly 10, 1967, 407–431.Google Scholar
  145. Chandra, S.: Linear Fractional Functional Programming.Journal of the Operations Research Society of Japan 10, 1967, 1–2.Google Scholar
  146. —: The Capacitated Transportation Problem in Linear Fractional Programming.Journal of the Operations Research Society of Japan 10, 1967, 18–26.Google Scholar
  147. —: Decomposition Principle for Linear Fractional Functional Programs.Revue Francaise d'Informatique et de Recherche Opérationelle 2, 1968, 65–72.Google Scholar
  148. —: Strong Pseudo-Convex Programming.Indian Journal of Pure and Applied Mathematics 3, 1972, 278–282.Google Scholar
  149. Chandra, S., and M. Chandramohan: Duality and Algorithmic Aspects of Integer Linear Fractional Programming.Research Report, Department of Mathematics, Indian Institute of Technology, New Delhi, 1976.Google Scholar
  150. —: An Improved Branch and Bound Method for Mixed Integer Linear Fractional Programs.Zeitschrift für Angewandte Mathematik und Mechanik 59, 1979, 575–577.Google Scholar
  151. —: Duality in Mixed Integer Nonconvex and Nondifferentiable Programming.Zeitschrift für Angewandte Mathematik und Mechanik 59, 1979, 205–209.Google Scholar
  152. —: A Branch and Bound Method for Integer Non-linear Fractional Programs.Zeitschrift für Angewandte Mathematik und Mechanik 60, 1980, 735–737.Google Scholar
  153. —: A Note on Integer Linear Fractional Programming.Naval Research Logistics Quarterly 27, 1980, 171–174.Google Scholar
  154. Chandra, S., and T.R. Gulati: A Duality Theorem for a Nondifferentiable Fractional Programming Problem.Management Science 23, 1976, 32–37.Google Scholar
  155. Chandrasekaran, R.: Minimum Ratio Spanning Trees.Networks 7, 1977, 335–342.Google Scholar
  156. Charnes, A., and W.W. Cooper: Programming with Linear Fractional Functionals.Naval Research Logistics Quarterly 9, 1962, 181–186.Google Scholar
  157. —: Systems Evaluation and Repricing Theorems.Management Sciences 9, 1962, 33–49.Google Scholar
  158. —: Programming with Linear Fractional Functionals, a Communication.Naval Research Logistics Quarterly 10, 1963, 273–274.Google Scholar
  159. —: Deterministic Equivalents for Optimizing and Satisficing Under Chance Constraints.Operations Research 11, 1963, 18–39.Google Scholar
  160. —: An Explicit General Solution in Linear Fractional Programming.Naval Research Logistics Quarterly 20, 1973, 449–467.Google Scholar
  161. —: Goal Programming and Multi-Objective Optimization, Part I.European Journal of Operational Research 1, 1977, 39–54.Google Scholar
  162. —: Auditing and Accounting for Program Efficiency and Management Efficiency in Not-for-Profit Entities.Accounting, Organizations, and Society 5, 1980, 87–107.Google Scholar
  163. —: Management Science Relations for Evaluation and Management Accountability.Journal of Enterprise Management 2, 1980, 143–162.Google Scholar
  164. Charnes, A., W.W. Cooper and E. Rhodes: Measuring the Efficiency of Decision Making Units.European Journal of Operational Research 2, 1978, 429–444: also: Corrections,op. cit. 3, 1979, 339.Google Scholar
  165. —: Evaluation Program and Managerial Efficiency: An Application of Data Envelopement Analysis for Program Follow Through.Management Science 27, 1981, 668–697.Google Scholar
  166. Charnes, A., L. Cox and M. Lane: A Note on the Redesigning of a Rate Structure for Allocation of State Funds to Educational Institutions.Working Paper 70-49 of Project GUM, University of Texas at Austin, May 1970.Google Scholar
  167. Charnes, A., and D. Granot: Constrained Non-Cooperative von Neumann Ratio Games.Working Paper No. 368, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, 1976.Google Scholar
  168. Charnes, A., D. Granot and F. Granot: An Algorithm for Solving General Fractional Interval Programming Problems.Naval Research Logistics Quarterly 23, 1976, 53–65.Google Scholar
  169. —: A Note on Explicit Solutions in Linear Fractional Programming.Naval Research Logistics Quarterly 23, 1976, 161–167.Google Scholar
  170. —: On Solving Linear Fractional Interval Programming Problems.Cahiers du Centre d'Etudes de Recherche Opérationelle 20, 1978, 45–57.Google Scholar
  171. Chong, J.H., and J.O. Kim: A Solution of Linear and Fractional Linear Programming with Both Restrictions (Korean).Su-hak kwa Mul-li 19, 1975, 9–15.Google Scholar
  172. Choo, E.U.: Multicriteria Linear Fractional Programming.PhD. — Thesis, University of British Columbia, Vancouver, 1980.Google Scholar
  173. Choo, E.U., and D.R. Atkins: An Interactive Algorithm for Multicriteria Programming.Computer and Operations Research 7, 1980, 81–87.Google Scholar
  174. -: Connectedness in Multiple Linear Fractional Programming. To appear in Management Science.Google Scholar
  175. —: Bicriteria Linear Fractional Programming.Journal of Optimization Theory and Applications 36, 1982, 204–220.Google Scholar
  176. Climaco, J.C.N., E.Q.V. Martins and M.S. Rosa: A Simplex Based Algorithm for the Minimal Average Speed Path Problem. Dept. of Mathematics, University of Coimbra, Coimbra (Portugal), Dec. 1981.Google Scholar
  177. Collatz, L., and W. Wetterling:Optimierungsaufgaben. 2. Ed., Springer, Berlin, 1971.Google Scholar
  178. Cook, W.D., M. J.L. Kirby and S.L. Mehndiratta: A Linear Fractional Max-Min Problem.Operations Research 23, 1975, 511–521.Google Scholar
  179. Corban, A.: Programming with Fractional Linear Objective Function.Revue Roumaine de Mathematique Pures et Appliquées 18, 1973, 633–637.Google Scholar
  180. —: Duality in Transportation Problems in Fractional Programming (Roumanian).Studii si Cercetari Matematice 25, 1973, 347–357.Google Scholar
  181. —: Duality in Non-Linear Programming (Roumanian).Studii si Cercetari Matematice 26, 1974, 375–399.Google Scholar
  182. —: Non-linear Three-Dimensional Programming.Revue Roumaine de Mathématiques Pures et Appliquées 20, 1975, 1043–1059.Google Scholar
  183. Craven, B.D.:Mathematical Programming and Control Theory. Chapman and Hall, London, 1978.Google Scholar
  184. —: Duality for Generalized Convex Fractional Programs. In: Schaible, S., and W.T. Ziemba, (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, 473–490.Google Scholar
  185. Craven, B.D., and B. Mond: On Fractional Programming and Equivalence.Naval Research Logistics Quarterly 22, 1975, 405–410.Google Scholar
  186. —: The Dual of a Fractional Linear Program.Journal of Mathematical Analysis and Applications 42, 1973, 507–512, andJournal of Mathematical Analysis and Applications 55, 1976, 807.Google Scholar
  187. —: Duality for Homogeneous Fractional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 18, 1976, 413–417.Google Scholar
  188. —: A Note on Duality in Homogeneous Fractional Programming.Naval Research Logistics Quarterly 26, 1979, 153–156.Google Scholar
  189. —: On Duality for Fractional Programming.Zeitschrift für Angewandte Mathematik und Mechanik 59, 1979, 278–279.Google Scholar
  190. Crouzeix, J.P.: Contributions à l'Etude des Fonctions Quasiconvexes.Doctoral Thesis, Université de Clermont, France, 1977.Google Scholar
  191. —: A Duality Framework in Quasiconvex Programming. In: Schaible, S., and W.T. Ziemba (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York 1981, 207–225.Google Scholar
  192. Crouzeix, J.P., J.A. Ferland and S. Schaible: Duality in Generalized Linear Fractional Programming.Technical Report No. 399, Départment d'informatique et de Recherche Opérationelle, Université de Montréal, March 1981.Google Scholar
  193. Dantzig, G.B., W. Blattner and M.R. Rao: Finding a Cycle in a Graph with Minimum Cost to Time Ratio with Applications to a Ship Routing Problem. In:Theory of Graphs. Intern. Symp., Dunod, Paris and Gordon and Breach, New York, 1966, 77–83.Google Scholar
  194. —: All Shortest Routes From a Fixed Origin in a Graph. In:Theory of Graphs. Intern. Symp., Dunod, Paris and Gordon and Breach, New York 1966, 85–90.Google Scholar
  195. Das, C., and K. Swamp: Complex Fractional Functional Programming with Non-linear Constraints.Zeitschrift für Angewandte Mathematik und Mechanik 55, 1975, 441–442.Google Scholar
  196. De Angelis, V.: Linear Programming with Uncertain Objective Function: Minimax Solution for Relative Loss.Calcolo 16, 1979, 125–141.Google Scholar
  197. Derman, C.: On Sequential Decisions and Marcov Chains.Management Science 9, 1962, 16–24.Google Scholar
  198. Dexter, N.S., J.M.W. Yu and W.T. Ziemba: Portfolio Selection in a Lognormal Market when the Investor has a Power Utility Function: Computational Results. In: Dempster, M.A.H. (ed.),Stochastic Programming. Academic Press, New York, 1980, 507–523.Google Scholar
  199. Dinkelbach, W.: Die Maximierung eines Quotienten zweier linearer Funktionen unter linearen Nebenbedingungen.Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1, 1962, 141–145.Google Scholar
  200. —: On Nonlinear Fractional Programming.Management Science 13, 1967, 492–498.Google Scholar
  201. Dorn, W.S.: Linear Fractional Programming. IBM Research Report RC-830, 1962.Google Scholar
  202. —: Nonlinear Programming: A Survey.Management Science 9, 1963, 171–208.Google Scholar
  203. Dragomirescu, M.: An Algorithm for the Minimum-Risk Problem of Stochastic Programming.Operations Research 20, 1972, 154–164.Google Scholar
  204. Duca, D.: On a Fractional Programming Problem (Roumanian).Studii si Cercetari Matematice 29, 1977, 487–497.Google Scholar
  205. —: On the Ordering of the Efficient Extremal Points in a Vectorial Programming Problem (Roumanian). Stud. Univ. Babes — Bolyai,Math 24, 1979, 57–63.Google Scholar
  206. —: On the Hierarchy of Extremal Solutions in a Problem of Fractional Programming (Roumanian).Studii si Cercetari Matematice 32, 1980, 179–185.Google Scholar
  207. Egisapetov, E.G.: Teaching Pattern Recognition with the Help of Decision Functions (Russian).Izvestja Akademii Nauk SSSR, Tekhnicheskaya Kibernetika (USSR) 5, 1969, 84–93.Google Scholar
  208. Eichhorn, W.: Effektivität von Produktionsverfahren.Operations Research Verfahren 12, 1972, 98–115.Google Scholar
  209. —:Functional Equations in Economics. Addison-Wesley, New York, 1978.Google Scholar
  210. Elmaghraby, S.E., and S. Arisawa: On Hyperbolic Programming with a Single Constraint and Upper-Bounded Variables.Management Science 19, 1972, 42–45.Google Scholar
  211. Elton, E.J., M.J. Gruber and M.W. Padberg: Simple Criteria for Optimal Portfolio Selection.The Journal of Finance 31, 1976, 1341–1357.Google Scholar
  212. —: Simple Criteria for Optimal Portfolio Selection with Upper Bounds.Operations Research 25, 1977, 952–957.Google Scholar
  213. Elzinga, J., D. Hearn and W.D. Randolph: Minimax Multifacility Location with Euclidian Distances.Transportation Science 10, 1976, 321–336.Google Scholar
  214. Ermol'eva, L.G.: A Problem of Fractional Nonlinear Programming (Russian).Kibernetika (Kiev) 2, 1972, 45–47.Google Scholar
  215. Faaland, B.H., and N.L. Jacob: The Linear Fractional Portfolio Selection Problem.Management Science 27, 1981, 1383–1389.Google Scholar
  216. Falk, J.E.: Maximization of Signal-to-Noise Ratio in an Optical Filter.SIAM Journal of Applied Mathematics 7, 1969, 582–592.Google Scholar
  217. Filipovich, E.I.: On Solving Fractional Programming Problems (Russian). Izd. Gor'skogo isledovatel'scogo fiziko-matematiceskogo Instituta Gor'kii, 1964.Google Scholar
  218. Flachs, J.: Global Saddle — Point Duality for Quasi-concave Programs.Mathematical Programming 20, 1981, 327–347.Google Scholar
  219. —: Global Saddle — Point Duality for Quasiconcave Programs II.WISK 177, National Research Institute for Mathematical Sciences, Pretoria, 1980.Google Scholar
  220. Flachs, J., and M. Pollatschek: Equivalence Between a Generalized Fenchel Duality Theorem and a Saddle-Point Theorem for Fractional Programs.Technical Report 114, Faculty of Industrial and Management Engineering, Technion, Haifa, 1978; to appear in J. of Optimization Theory and Applications.Google Scholar
  221. Florian, M., and P. Robillard: Programmation hyperbolique en variables bivalentes.Revue Francaise d'Informatique et de Recherche Opérationelle 1, 1971, 3–9.Google Scholar
  222. Fox, B.: Markov Renewal Programming by Linear Fractional Programming.SIAM Journal of Applied Mathematics 14, 1966, 1418–1432.Google Scholar
  223. —: Finding Minimum Cost-Time Ratio Circuits.Operations Research 17, 1969, 546–550.Google Scholar
  224. Frair, L.: A Scheduling Procedure to Minimize Community Annoyance from Airport Noise. Department of Industrial Engineering and Operations Research, Virginia Polytechnic Institute and State University, 1982.Google Scholar
  225. Garg, K.C., and K. Swarup: Linear Fractional Functional Complementary Programming with Extreme Point Optimization.Indian Journal of Pure and Applied Mathematics 9, 1978, 556–563.Google Scholar
  226. —: Complimentary Programming with Linear Fractional Objective Function.Cahiers du Centre d'Etudes de Recherche Opérationelle 20, 1978, 83–94.Google Scholar
  227. —: The Use of Cuts in Linear Fractional Functional Complementary Programming.Zeitschrift für Angewandte Mathematik und Mechanik 60, 1980, 53–54.Google Scholar
  228. Gass, S.I.:Linear Programming: Methods and Applications. 4th Ed., McGraw-Hill, New York, 1975.Google Scholar
  229. Geoffrion, A.M.: Stochastic Programming with Aspiration and Fractile Criteria.Management Science 13, 1967, 672–679.Google Scholar
  230. —: Solving Bi-criterion Mathematical Programs.Operations Research 15, 1967, 39–54.Google Scholar
  231. Goeffrion, A.M., J.S. Dyer and A. Feinberg: An Interactive Approach for Multicriterion Optimization with an Application to the Operation of an Academic Department.Management Science 19, 1972, 357–368.Google Scholar
  232. Gilmore, P.C., and R.E. Gomory: A Linear Programming Approach to the Cutting Stock Problem — Part II.Operations Research 11, 1963, 863–888.Google Scholar
  233. Gogia, N.K.: The Multiplex Method for Linear Fractional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 9, 1967, 123–133.Google Scholar
  234. —: Revised Simplex Algorithm for the Linear Fractional Functional Programming Problem.Mathematical Student 36, 1968, 55–57.Google Scholar
  235. —: The Non-Linear Fractional Functional Programming Problem with Separable Functions.Journal of Mathematical Sciences 4, 1969, 77–84.Google Scholar
  236. Gol'stein, E.G.: Dual Problems of Convex and Fractionally — Convex Programming in Functional Spaces.Soviet Mathematics Doklady 8, 1967, 212–216.Google Scholar
  237. -:Theory of Convex Programming. Translations of Mathematical Monographs, American Mathematical Society, 1972.Google Scholar
  238. —:Konvexe Optimierung. Akademie-Verlag, Berlin, 1973.Google Scholar
  239. Golub, G.H., and R. Underwood: Stationary Values of the Ratio of Quadratic Forms Subject to Linear Constraints.Zeitschrift für Angewandte Mathematik und Physik 21, 1970, 318–326.Google Scholar
  240. Granot, D., and F. Granot: On Solving Fractional (0,1) Programs by Implicit Enumeration.Canadian Journal of Operational Research and Information Processing 14, 1976, 241–249.Google Scholar
  241. —: On Integer and Mixed Integer Fractional Programming Problems.Annals of Discrete Mathematics 1, 1977, 221–231.Google Scholar
  242. Grinold, R.C., and R.E. Stanford: Limiting Distributions in a Linear Fractional Flow Model.SIAM Journal on Applied Mathematics 30, 1976, 402–406.Google Scholar
  243. Grunspan, M.: Fractional Programming: A Survey.Technical Report 50, Department of Industrial and Systems Engineering, University of Florida, January 1971.Google Scholar
  244. Grunspan, M., and M.E. Thomas: Hyperbolic Integer Programming.Naval Research Logistics Quarterly 20, 1973, 341–356.Google Scholar
  245. Gulati, T.R.: Duality for a Nondifferentiable Fractional Program.Cahiers du Centre d'Etudes de Recherche Opérationelle 21, 1979, 325–330.Google Scholar
  246. Gulati, T.R., and S. Chandra: A Duality Theorem for Complex Fractional Programming.Zeitschrift für Angewandte Mathematik und Mechanik 55, 1975, 348–349.Google Scholar
  247. Gupta, A.K., and J.K. Sharma: Fractional Functional Programming: A Brief Survey. Saharanpur, 1981.Google Scholar
  248. Gupta, R.K.: Basic Feasible Solutions and Decomposition Principle for Linear Fractional Functional Programming Problem.Trabajos de Estradishica 22, 1971, 185–193.Google Scholar
  249. —: A Simple Class of Parametric Linear Fractional Functionals Programming Problem.Cahiers du Centre d'Etudes et de Recherche Opérationelle 15, 1973, 185–196.Google Scholar
  250. —: A Simple Class of Parametric Linear Fractional Functional Programming Problem, Erratum.Cahiers du Centre d'Etudes de Recherche Opérationelle 16, 1974, 179.Google Scholar
  251. —: Decomposition Method and Transportation Type Problems with a Fractional Objective Function.Zeitschrift für Angewandte Mathematik und Mechanik 57, 1977, 81–88.Google Scholar
  252. Gupta, R.K., and C.R. Bector: Nature of Quotients, Products and Rational Powers of Convex (Concave) — Like Functions.The Mathematical Student 36, 1968, 63–67.Google Scholar
  253. Gupta, R.K., and S.K. Bhatt: Generalized Pseudo-Convex Functions.Cahiers du Centre d'Etudes de Recherche Opérationelle 14, 1972, 213–222.Google Scholar
  254. Gupta, R.K., and K. Swarup: Approximate Method of Solution for Nonlinear Fractional Programming.Zeitschrift für Angewandte Mathematik und Mechanik 49, 1969, 753–756.Google Scholar
  255. —: A Cutting Plane Algorithm for Extreme Point Linear Fractional Functional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 16, 1974, 161–177.Google Scholar
  256. —: On Extreme Point Fractional Programming.Portugaliae Mathematica 37, 1978, 13–29.Google Scholar
  257. Gutenberg, E.:Einführung in die Betriebswirtschaftslehre. Gabler, Wiesbaden, 1975.Google Scholar
  258. Halpern, J.: Ratios in Planning, Budgeting and Bounds on Resource Requirements.Operations Research 20, 1972, 974–983.Google Scholar
  259. Hammer, P.L., and S. Rudeanu:Boolean Methods in Operations Research and Related Areas. Springer, Berlin-Heidelberg-New York, 1968.Google Scholar
  260. Hannan, E.L.: Effects of Substituting a Linear Goal for a Fractional Goal in the Goal Programming Problem.Management Science 24, 1977, 105–107.Google Scholar
  261. —: On An Interpretation of Fractional Objectives in Goal Programming as Related to Papers by Awerbuch et al. and Hannan.Management Science 27, 1981, 847–848.Google Scholar
  262. Hartmann, K.: Rein ganzzahlige lineare Quotientenoptimierung nach dem Schnitt-ebenenverfahren von Gomory.Mathematische Operationenforschung und Statistik 6, 1975, 33–53.Google Scholar
  263. —: Gemischt ganzzahlige lineare Quotientenoptimierung nach dem Schnittebenenverfahren von Gomory.Mathematische Operationenforschung und Statistik 6, 1975, 845–854.Google Scholar
  264. Hartwig, H.: Ein simplexartiger Lösungsalgorithmus für pseudolineare Optimierungs-probleme.Studia Scientarum Mathematicarum Hungarica 10, 1975, 213–236.Google Scholar
  265. Hearn, D., and W.D. Randolph: Dual Approaches to Quadratically Constrained Quadratic Programming. Department of Industrial and Systems Engineering, University of Florida, Gainesville, Sept. 1973.Google Scholar
  266. Heinen, E.: Betriebliche Kennzahlen, eine organisationstheoretische und kybernetische Analyse. In: Lindhardt, H., P. Penzkofer und P. Scherpf (eds.),Dienstleistungen in Theorie und Praxis. Stuttgart 1970, 227–236.Google Scholar
  267. —:Grundlagen betriebswirtschaftlicher Entscheidungen. Das Zielsystem der Unternehmung. 2. Aufl., Gabler, Wiesbaden, 1971.Google Scholar
  268. Hirche, J.: Zur Extremwertannahme und Dualität bei Optimierungsproblemen mit linearem und gebrochen linearem Zielfunktionsanteil.Zeitschrift für Angewandte Mathematik und Mechanik 55, 1975, 184–185.Google Scholar
  269. —: Nichtkonvexe Optimierungsprobleme mit zusammengesetzten Zielfunktionen.Dissertation B, Martin-Luther-Universität, Halle, 1977.Google Scholar
  270. —: Vektorminimumprobleme mit verallgemeinert konvexen Zielfunktionen.Bericht des 24. Internationalen wissenschaftlichen Kolloquiums der Technischen Hochschule Ilmenau, Vortragsreihe B1, 1979, 13–16.Google Scholar
  271. —: Optimierungsprobleme mit zusammengesetzten Zielfunktionen und Vektoroptimierung.Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 26, 1980, 123–134.Google Scholar
  272. Hirche, J., J. Köhler and V. Stieblitz: Ein effektives Lösungsverfahren für das hyperbolische Transportproblem.Beiträge zur Analysis 7, 1975, 151–156.Google Scholar
  273. Hirche, J., and H.K. Tan: Über eine Klasse nichtkonvexer Optimierungsprobleme.Zeitschrift für Angewandte Mathematik und Mechanik 57, 1977, 247–253.Google Scholar
  274. Hordijk, A.: Dynamic Programming and Marcov Potential Theory.Mathematical Centre Tracts 51, Amsterdam, 1974.Google Scholar
  275. Harváth, Ion.: Linear Fractional Programming with Additional Constraints (Roumanian).Revista de Analiza Numerica si Teoria Aproximatiei 3, 1974, 71–77.Google Scholar
  276. Ibaraki, T.: Solving Mathematical Programming Problems with Fractional Objective Functions. In: Schaible, S., and W.T. Ziemba (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, 441–472.Google Scholar
  277. -: Parametric Approaches to Fractional Programs.Technical Report. Dept. of Applied Mathematics and Physics, Kyoto University, January, 1982.Google Scholar
  278. Ibaraki, T., et al.: Algorithms for Quadratic Fractional Programming Problems.Journal of the Operations Research Society of Japan 19, 1976, 174–191.Google Scholar
  279. Intriligator, M.D.:Mathematical Optimization and Economic Theory. Prentice-Hall, Englewood Cliffs, N.J., 1971.Google Scholar
  280. Isbell, J.R., and W.H. Marlow: Attrition Games.Naval Research Logistics Quarterly 3, 1956, 71–94.Google Scholar
  281. Ishii, H., T. Ibaraki, and H. Mine: A Primal Cutting Plane Algorithm for Integer Fractional Programming Problems.Journal of the Operations Research Society of Japan 19, 1976, 228–244.Google Scholar
  282. —: Fractional Knapsack Problems.Mathematical Programming 13, 1977, 255–271.Google Scholar
  283. Ishii, H., T. Nishida, and A. Daino: Fractional Set Covering Problems.Technology Reports of the Osaka University 29, 1979, 319–326.Google Scholar
  284. Jacobsen, S.: Comparison of the Primal, Dual and Primal-Dual Decomposition Algorithms. (Notes on Operations Research 6),Report ORC 67-17, Operations Research Center, University of California, Berkeley, 1967.Google Scholar
  285. Jagannathan, R.: On Some Properties of Programming Problems in Parametric Form Pertaining to Fractional Programming.Management Science 12, 1966, 609–615.Google Scholar
  286. —: Duality for Nonlinear Fractional Programs.ZOR — Zeitschrift für Operations Research 17, Series A, 1973, 1–3.Google Scholar
  287. Jagannathan, R., and S. Schaible: Duality in Generalized Fractional Programming via Farkas' Lemma.Working Paper 82-8, College of Business Administration, University of Iowa, March 1982.Google Scholar
  288. Jain, O.P.: Duality for Fractional Functional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 21, 1979, 81–86.Google Scholar
  289. Joksch, H.C.: Programming with Fractional Linear Objective Functions.Naval Research Logistics Quarterly 11, 1964, 197–204.Google Scholar
  290. Jüttler, H.: Die Lineare Quotientenoptimierung als Hilfsmittel für die Entscheidungsfindung.Rechentechnik — Datenverarbeitung Heft 11, 1967.Google Scholar
  291. —: Untersuchungen zu Fragen der Operationsforschung und ihrer Anwendungsmöglichkeiten auf ökonomische Problemstellungen unter besonderer Berücksichtigung der Spieltheorie.Dissertation, Wirtschaftswissenschaftliche Fakultät der Humboldt-Universität, Berlin, 1969, 144–181.Google Scholar
  292. Kabe, D.G.: Direct Solutions to the m-Median and Fractional Transportation Problems.Ind. Math. 30, 1980, 1–27.Google Scholar
  293. —: On a Certain Linear Fractional Programming Problem.Indian Journal of Pure and Applied Mathematics 11, 1980, 1411–1413.Google Scholar
  294. Kac'janjuk, S.A.: A Certain Problem in Infinite Linear Fractional Programming (Russian).Žurnal Vyčislitel'noi Matematiki i Matematičeskoi Fiziki 9, 1969, 413–417.Google Scholar
  295. Kallberg, J.G., and W.T. Ziemba: Generalized Concave Functions in Stochastic Programming and Portfolio Theory. In: Schaible, S., and W.T. Ziemba (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, 719–767.Google Scholar
  296. Kanchan, P.K.: Linear Fractional Functional Programming.Acta Ciencia Indica 2, 1976, 401–405.Google Scholar
  297. —: Upper Bounds in Linear and Piecewise Linear Programming.Acta Ciencia Indica 3, 1977, 357–360.Google Scholar
  298. Kanchan, P.K., A.S.B. Holland, and B.N. Sahney: Transportation Techniques in Linear-Plus-Fractional Programming.Cahiers du Centre de Recherche Opérationelle 23, 1981, 153–157.Google Scholar
  299. Karp, R.M.: A Characterization of the Minimum Cycle Mean in a Digraph.Memorandum No. UCB/ERL 147, Electronic Research Laboratory, College of Engineering University of California at Berkeley, 1977.Google Scholar
  300. Kaska, J.: Duality in Linear Fractional Programs.Economicko-Matematicky Obzor 5, 1969, 442–453.Google Scholar
  301. Kaska, J., and M. Pisek: Quadratic-Linear Fractional Programming (Czech).Economicko-Matematicky Obzor 2, 1966, 169–173.Google Scholar
  302. —: Convex-Concave Fractional Programming (Czech).Economicko-Matematicky Obzor 3, 1967, 457–464.Google Scholar
  303. Kas'yanyuk, S.A., and B.M. Kucher: Monotonic Programming (Ukrainian).Dupovidi Akademii Nauk URSR (USSR) A, 1967, 18–21.Google Scholar
  304. Kataoka, S.: A Stochastic Programming Model.Econometrica 11, 1963, 18–39.Google Scholar
  305. —: Stochastic Programming Maximum Probability Model. Hitotsubashi,Journal of Arts and Science 8, 1967, 51–59.Google Scholar
  306. Kaul, R.N., and D. Bhatia: Generalized Linear Fractional Programming.Ekonomicko-Matematicky Obzor 10, 1974, 322–330.Google Scholar
  307. Kaul, R.N., and S.S. Chadha: Duality in Nonlinear Fractional Programming Problems.Ekonomicko-Matematicky Obzor 7, 1971, 141–148.Google Scholar
  308. Kaul, R.N., and N. Datta: On the Solution of Separable Programming Problem with a Fractional Objective Function.Cahiers du Centre d'Etudes de Recherche Opérationelle 23, 1981, 159–169.Google Scholar
  309. Kaul, R.N., and B. Gupta: Efficiency and Linear Vector Maximum Value Problem.Zeitschrift für Angewandte Mathematik und Mechanik 60, 1980, 112–113.Google Scholar
  310. Kaul, R.N., and M. Lata: A Method of Decomposition for Linear Fractional Programming.Opsearch 11, 1974, 183–192.Google Scholar
  311. Kaur, S.: Inexact Fractional Programming with Set Inclusive Constraints.Cahiers du Centre d'Etudes de Recherche Opérationelle 23, 1981, 171–181.Google Scholar
  312. Kern, W.: Rentabilitätsanalyse.Zeitschrift für handelswissenschaftliche Forschung 12, 1960, 17–40.Google Scholar
  313. —: Kennzahlensysteme als Niederschlag interdependenter Unternehmungsplanung.Zeitschrift für betriebswirtschaftliche Forschung 23, 1971, 701–718.Google Scholar
  314. Khan, S.U., and A. Bari: A Procedure for Integer Solutions to some Allocation Problems.Pure and Applied Mathematical Sciences 5, 1977, 25–32.Google Scholar
  315. Kirsch, W.:Gewinn und Rentabilität. Gabler, Wiesbaden, 1968.Google Scholar
  316. Klein, M.: Inspection — Maintenance — Replacement Schedule Under Marcovian Deterioration.Management Science 9, 1962, 25–32.Google Scholar
  317. Klevachev, V.I.: Solving the Problem of Linear Fractional Programming.Kibernetika 4, 1968, 27–31.Google Scholar
  318. Kloock, J.: Kurzfristige Produktionsplanungsmodelle auf der Basis von Entscheidungsfeldern mit alternativer Fremd- und Eigenfertigung (mit variablen Produktionstiefen).Zeitschrift für betriebswirtschaftliche Forschung 26, 1974, 671–682.Google Scholar
  319. Köhler, J., and J. Hirche: Mehrfache Zerlegung hyperbolischer Optimierungsaufgaben.Beiträge zur Analysis 7, 1975, 143–149.Google Scholar
  320. Körth, H.: Zur Quotientenoptimierung. XII. Internationales wissenschaftliches Kolloquium, Technische Hochschule Ilmenau, 1967, 95–99.Google Scholar
  321. —: Untersuchungen zur nichtlinearen Optimierung ökonomischer Erscheinungen und Prozesse unter besonderer Berücksichtigung der Quotientenprogrammierung sowie der Lösung ökonomisch-mathematischer Modelle bei Existenz mehrerer Zielfunktionen.Habilitationsschrift, Humboldt-Universität, Berlin, Sektion Wirtschaftswissenschaft, 1969.Google Scholar
  322. —: Ein Zerlegungsprinzip für die hyperbolische Optimierung.Wissenschaftliche Zeitschrift der Humboldt—Universität zu Berlin, Ges. — Sprachw. R. XVIII, 1969, 827–829.Google Scholar
  323. —: Transportoptimierung mit hyperbolischer Zielfunktion.Wissenschaftliche Zeitschrift der Humboldt-Universtität zu Berlin, Ges. — Sprachw. R. XIX, 1970, 737–740.Google Scholar
  324. —: Hyperbolische Transportoptimierung mit Beschränkung der Variablen.Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Ges. — Sprachw. R. XX, 1971, 521–524.Google Scholar
  325. -: Verallgemeinerte hyperbolische Optimierungsaufgabe. 24.Internationales wissenschaftliches Kolloquium, Technische Hochschule Ilmenau, Heft 4, 1979, 41–43.Google Scholar
  326. Kornbluth, J.S.H.: A Survey of Goal Programming.Omega 1, 1973, 193–205.Google Scholar
  327. -: Indifference Regions and Marginal Utility Weights in Multiple Objective Linear Fractional Programming.Working Paper 79-02-3, Dept of Decision Sciences, The Wharton School, University of Pennsylvania, 1979.Google Scholar
  328. —: Multiple Objective Linear Fractional Programming Algorithms, Some Computational Experience.Lecture Notes in Economics and Mathematical Systems 190, 1981, 173–198.Google Scholar
  329. Kornbluth, J.S.H., and G.R. Salkin: A Note on the Economic Interpretation of the Dual Variables in Linear Fractional Programming.Zeitschrift für Angewandte Mathematik und Mechanik 52, 1972, 175–178.Google Scholar
  330. —: The Optimal Dual Solution in Linear Fractional Decomposition Problems.Operations Research 22, 1974, 183–189.Google Scholar
  331. —: A Note on Returns to Scale in Linear Fractional Programming.Zeitschrift für Angewandte Mathematik und Mechanik 55, 1975, 757–758.Google Scholar
  332. Kornbluth, J.S.H., and R.E. Steuer: On Computing the Set of all Weakly Efficient Vertices in Multiple Objective Linear Fractional Programming. In: Fandel, G., and T. Gal (eds.),Multiple Criteria Decision Making — Theory and Application. Lecture Notes in Economics and Mathematical Systems 177, 1980, 189–202.Google Scholar
  333. —: Goal Programming with Linear Fractional Criteria.European Journal of Operational Research 8, 1981, 58–65.Google Scholar
  334. —: Multiple Objective Linear Fractional Programming.Management Science 27, 1981, 1024–1039.Google Scholar
  335. Kovacs, A., and J. Stahl: Decomposition Procedure in Case of Maximizing the Index of Enterprise Interest (Hungarian).Szigma 6, 1973, 105–114.Google Scholar
  336. —: On Large Scale Linear Fractional Programs.Lectures Notes in Computer Science 41, 1976, 353–361.Google Scholar
  337. Kreko, B.:Optimierung, Nichtlineare Modelle. Deutscher Verlag der Wissenschaften, Berlin, und Akadémiai Kiadó, Budapest, 1974.Google Scholar
  338. Kreuzberger, O.: Bemerkungen zur Quotienten- und Produktoptimierung mit Anwendung beim Risikoproblem der stochastischen Optimierung.Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle — Wittenberg, Mathematisch-Natur-wissenschaftliche Reihe 27, 1978, 75–79.Google Scholar
  339. Kydland, F.: Simulation of Linear Operators. Institute of Shipping Research, Norwegian School of Economics and Business Administration, Bergen, translated and reprinted fromSosialoekonomen 23, 1969.Google Scholar
  340. —: Duality in Fractional Programming.Naval Research Logistics Quarterly 19, 1972, 691–697.Google Scholar
  341. Lange, E.G., and A.V. Artjuhin: Some Problems of Linear — Fractional Parametric Programming (Russian).Mathematical Methods for the Solution of Mathematical-Economic Problems, Izdat, “Ilim”, Frunze, 1974, 5–19.Google Scholar
  342. Lasdon, L.S.:Optimization Theory for Large Systems. MacMillan, London, 1970.Google Scholar
  343. Lata, M.: Strong Pseudoconvex Programming in Banach Space.Indian Journal of Pure and Applied Mathematics 6, 1975, 45–48.Google Scholar
  344. Lata, M., and B.S. Mittal: An Operator Theory for a Class of Linear Fractional Programming Problems, I.Zeitschrift für Angewandte Mathematik und Mechanik 55, 1975, 133–140.Google Scholar
  345. —: An Operator Theory for a Class of Linear Fractional Programming Problems, II.Zeitschrift für Angewandte Mathematik und Mechanik 56, 1976, 75–88.Google Scholar
  346. —: A Decomposition Method for Interval Linear Fractional Programming Problems.Zeitschrift für Angewandte Mathematik und Mechanik 56, 1976, 153–159.Google Scholar
  347. Lawler, E.M.: Optimal Cycles in Graphs and the Minimal Cost-to-Time Ratio Problem.Technical Report ERL-M343, Department of Electrical Engineering, University of California, Berkeley, May 1972.Google Scholar
  348. —:Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York, 1976.Google Scholar
  349. Lazarev, I.A.: Determination of the Extremum in a Nonregular Network Problem with Fixed Costs Involving Penalties (Russian). Izvestija Academii Nauk SSSR.Tekhnicheskaya Kibernetika 2, 1975, 36–46.Google Scholar
  350. Lee, S.M., and E.R. Clayton: A Goal Programming Model for Academic Resource Allocation.Management Science 18, 1972, B395-B408.Google Scholar
  351. Leleno, J.: Remarks on the Algorithm of B. Martos for the Solution of Hyperbolic Programming Problems (Polish).Przeglad Statystyczny 24, 1977, 399–408.Google Scholar
  352. Lemke, C.E., and T.J. Powers: A Dual Decomposition Principal.RPI Math. Report 48, Rensselaer Polytechnic Institute, Troy, N.Y., 1961.Google Scholar
  353. Lintner, J.: The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets.Review of Economics and Statistics 18, 1965, 13–37.Google Scholar
  354. Lücke, W.:Produktions- und Kostentheorie. Physica-Verlag, Würzburg-Wien, 1969.Google Scholar
  355. Lupsa, L.: Remarques Concernant le Rapport entre les Problemès de Programmation Quadratique Indéfinie et les Problemès de Programmation Hyperbolique.Studia Universitatis Babes — Bolyai. Mathematica 23, 1978, 50–54.Google Scholar
  356. Mahajan, D.G., and M.N. Vartak: Generalization of Some Duality Theorems in Nonlinear Programming.Mathematical Programming 12, 1977, 293–317.Google Scholar
  357. Manas, M.: On Transformations of Quasi-Convex Programming Problems.Ekonomicko-Matematicky Obzor 4, 1968, 93–99.Google Scholar
  358. Mangasarian, O.L.:Nonlinear Programming. McGraw-Hill, New York, 1969.Google Scholar
  359. —: Nonlinear Fractional Programming.Journal of the Operations Research Society of Japan 12, 1969, 1–10.Google Scholar
  360. —: Convexity, Pseudo-Convexity and Quasiconvexity of Composite Functions.Cahiers du Centre d'Etudes de Recherche Opérationelle 12, 1970, 114–122.Google Scholar
  361. Manjurov, D.M.: Investigation of a Linear-Fractional Programming Problem When Certain Parameters are Varied (Russian).Izvestija Akademii Nauk Azerbaidžanskoi SSR Serija Fiziko-Techničeskin i Matematičeskih Nauk 4, 1968, 89–95.Google Scholar
  362. —: A Certain Generalized Problem of Linear-Fractional Programming (Russian).Numerical Mathematics, Izdat. “Elm”, Baku, 1973, 88–103.Google Scholar
  363. —: Block Methods for Fractional Linear Programming (Russian).Questions of Mathematical Cybnertics and Applied Mathematics 1, Izdat. “Elm”, Baku, 1975, 51–71.Google Scholar
  364. Mao, J.C.T.: Essentials of Portfolio Diversification Strategy.Journal of Finance 25, 1970, 1109–1121.Google Scholar
  365. Martein, L., and L. Pellegrini: Un Algoritmo per la Determinazione del Massimo di una Particolare Funzione Razionale Fratta Soggetta a Vincoli Lineari.Paper No. A-45, Dept. of Operations Research, University of Pisa, Italy, 1977.Google Scholar
  366. —: Su Un'estensione di Ona Particolare Classe di Problemi di Programmazione Frazionaria.Paper No. A-48, Department of Operations Research, University of Pisa, Italy, 1977.Google Scholar
  367. Martin, W.R. III: An Augmented Formulation of the Transportation Problem with Application to Resource Allocation and Production Systems.Command and Information Systems, General Electric Company, Sunnyvale, California, 1978.Google Scholar
  368. Martos, B.: Hyperbolic Programming.Naval Research Logistics Quarterly 11, 1964, 135–155; originally published inMath. Institute of Hungarian Academy of Sciences 5, (Hungarian), 1960, 383–406.Google Scholar
  369. —: The Direct Power of Adjecent Vertex Programming Methods.Management Science 12, 1965, 241–252.Google Scholar
  370. —: Errata.Management Science 14, 1968, 255–256.Google Scholar
  371. —:Nonlinear Programming, Theory and Methods. North-Holland, Amsterdam, 1975.Google Scholar
  372. Mazzoleni, P.: Stationary Values of the Ratio of Quadratic Polynomials.Technical Report No. 45, The Hatfield Polytechnic, February 1973.Google Scholar
  373. -: The Dual for a Particular Fractional Program.Technical Report No. 59, Numerical Optimization Centre, The Hatfield Polytechnic, September 1974.Google Scholar
  374. —: Some Experience on a Moving-Truncation Method Applied to a Nonlinear Programming Problem with a Fractional Objective Function. In: Dixon, L.C.W. (ed.),Towards Global Optimization. North-Holland, Amsterdam, 1975, 350–360.Google Scholar
  375. Megiddo, N.: Combinatorial Optimization with Rational Objective Functions.Mathematics of Operations Research 4, 1979, 414–424.Google Scholar
  376. Meister, B., and W. Oettli: On the Capacity of a Discrete, Constant Channel.Information and Control 11, 1967, 341–351.Google Scholar
  377. Mensch, G.: The (0,1) Indefinite Programming Problem. International Institute of Management, Berlin, March 1972.Google Scholar
  378. Meyer, C.:Kennzahlen und Kennzahlensysteme. Poeschel, Stuttgart, 1976.Google Scholar
  379. Misra, S., and C. Das: The Sum of a Linear and Linear Fractional Function and a Three Dimensional Transportation Problem.Opsearch 18, 1981, 139–157.Google Scholar
  380. Mjelde, K.M.: Convex-Concave Fractional Programming with Each Variable Occurring in a Single Constraint.BIT, Nordisk Tidskrift for Informationsbehandling 18, 1978, 202–210.Google Scholar
  381. —: Sufficiency of Kuhn-Tucker Optimality Conditions for a Fractional Programming Problem.BIT, Nordisk Tidskrift for Informationsbehandling 18, 1978, 454–456.Google Scholar
  382. —: Allocation of Resources According to a Fractional Objective.European Journal of Operational Research 2, 1978, 116–124.Google Scholar
  383. —: Convex-Concave Fractional Programming — Evaluation of Solutions and Optimality Conditions.BIT, Nordisk Tidskrift for Informationsbehandling 19, 1979, 270.Google Scholar
  384. —: Allocation Problems Involving the Replenishment of Resources.Operations Research Verfahren 35, 1979, 313–314.Google Scholar
  385. —: Location of a Discrete Resource and its Allocation According to a Fractional Objective.European Journal of Operational Research 4, 1979, 49–53.Google Scholar
  386. —: Properties of Optimal Allocations of Resources According to a Fractional Objective.Journal of the Operational Research Society 32, 1981, 405–408.Google Scholar
  387. —:Methods of the Allocation of Limited Resources. J. Wiley and Sons, Chichester, 1983.Google Scholar
  388. Mohnar, Z., and V.T. Mohnar: Solution of a Hyperbolic Zero-One Programming Problem by the Branch and Bound Method (Czech).Ekonomicko-Matematicky Obzor 12, 1976, 428–437.Google Scholar
  389. Mond, B.:Fractional Programming. Optimization (Proc Sem., Austral. Nat. Univ., Canberra, 1971), Univ. Queensland Press, St. Lucia, 1972, 172–181.Google Scholar
  390. —: A Class of Nondifferentiable Fractional Programming Problems.Zeitschrift für Angewandte Mathematik und Mechanik 58, 1978, 337–341.Google Scholar
  391. —: On Algorithmic Equivalence in Linear Fractional Programming.Mathematics of Computation 37, 1981, 185–187.Google Scholar
  392. Mond, B., and B.D. Craven: A Note on Mathematical Programming with Fractional Objective Functions.Naval Research Logistics Quarterly 20, 1973, 577–581.Google Scholar
  393. —: Nonlinear Fractional Programming.Bulletin of the Australian Mathematical Society 12, 1975, 391–397.Google Scholar
  394. —: On Fractional Programming and Equivalence.Naval Research Logistics Quarterly 22, 1975, 405–410.Google Scholar
  395. —: A Duality Theorem for a Nondifferentiable Nonlinear Fractional Programming Problem.Bulletin of the Australian Mathematical Society 20, 1979, 397–406.Google Scholar
  396. Mond, B., and M. Schechter: Duality Theory for a Homogeneous Fractional Programming Problem.Journal of Optimization Theory and Applications 25, 1978, 349–359.Google Scholar
  397. —: Duality in Homogeneous Fractional Programming.Journal of Information and Optimization Sciences 1, 1980, 271–280.Google Scholar
  398. Mond, B., and T. Weir: Generalized Concavity and Duality. In: Schaible, S., and W.T. Ziemba (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, 263–279.Google Scholar
  399. Morris, A.J.: Generalization of Dual Structural Optimization Problems in Terms of Fractional Programming.Quarterly of Applied Mathematics 36, 1978, 115–119.Google Scholar
  400. Motanov, V.: Optimization Problems with a Linear Fractional Functional (Russian).Ekonom. i Mat. Metody 7, 1971, 586–592.Google Scholar
  401. Nabeya, S.: On Linear Fractional Programming.Hitotsubashi Journal of Arts and Sciences 5, 1965, 58–64.Google Scholar
  402. Narihisa, H.: An Algorithm for Solving the Stochastic Programming Problem.Memoirs of the Defense Academy 18, 1978, 151–160.Google Scholar
  403. Neumann, J. von: Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. In: Menger, K., (ed.),Ergebnisse eines mathematischen Kolloqiums, Heft 8, Leipzig und Wien, 1937, 73–83.Google Scholar
  404. —: A Model of General Economic Equilibrium.Review of Economic Studies 13, 1945, 1–9.Google Scholar
  405. Nguyen, N.T.: The Generalized Beale Method for Pseudo-Convex Functions (Russian).Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, Nouvelle Série 21, 1977, 67–81.Google Scholar
  406. Ohlson, J.A., and W.T. Ziemba: Portfolio Selection in a Lognormal Market when the Investor has a Power Utility Function.Journal of Financial and Quantitative Analysis 11, 1976, 57–71.Google Scholar
  407. Pack, L.: Maximierung der Rentabilität als preispolitisches Ziel. In: Koch, H. (ed.),Zur Theorie der Unternehmung, Festschrift für E. Gutenberg. Gabler, Wiesbaden, 1962, 73–135.Google Scholar
  408. —; Rationalprinzip, Gewinnprinzip und Rentabilität.Zeitschrift für Betriebswirtschaft 35, 1965, 525–551.Google Scholar
  409. Pang, J.S.: A Parametric Linear Complementarity Technique for Optimal Portfolio Selection with a Risk-Free Asset.Operations Research 28, 1980, 927–941.Google Scholar
  410. Parkash, O., P.C. Saxena and V. Patkar: Duality in a Class of Nonlinear Fractional Programming Problems.National Academy Science Letters 2, 1979, 267–268.Google Scholar
  411. Passy, U.: Fractional Programming Using Pseudo Duality.Operations Research Verfahren 31, 1979, 481–493.Google Scholar
  412. —: Pseudo Duality and Non-Convex Programming. In: Schaible, S., and W.T. Ziemba (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, 239–261.Google Scholar
  413. —: Pseudo Duality in Mathematical Programs with Quotients and Products.Journal of Optimization Theory and Applications 33, 1981, 349–374.Google Scholar
  414. Passy, U., and A. Keslassy: Pseudo Duality and Duality for Explicitly Quasiconvex Functions.Mimeograph Series No. 249, Faculty of Industrial Engineering and Management, Technion, Haifa, 1979.Google Scholar
  415. Patkar, V., P.C. Saxena and O. Parkash: On a Class of Quadratic Fractional Programming Problems.National Academy Science Letters 2, 1979, 29–30.Google Scholar
  416. Podkaminer, L.: Dual Prices and Other Parameters of the Optimal Solution with a Criterion Function in the Form of a Quotient (Polish).Przeglad Statyst 18, 1971, 333–338.Google Scholar
  417. Pogodin, V.P.: Study of a Certain Parametric Linear-Fractional Programming Problem (Russian).Mathematical Methods in Economics Research, Izdat. “Nauka”, Moscow, 1974, 44–50.Google Scholar
  418. Puri, M.C.: Enumerative Technique for Extreme Point Linear Fractional Programming Problems. SCIMA,Journal of Management Science and Applied Cybernetics 2, 1973, 1–8.Google Scholar
  419. Puri, M.C., and K. Swarup: Extreme Point Linear Fractional Functional Programming.ZOR — Zeitschrift für Operations Research 18, 1974, 131–139.Google Scholar
  420. —: Strong-Cut Cutting Plane Method for Extreme Point Linear Fractional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 17, 1975, 65–69.Google Scholar
  421. Rani, O., and R.N. Kaul: Duality Theorems for a Class of Nonconvex Programming Problems.Journal of Optimization Theory and Applications 11, 1973, 305–308.Google Scholar
  422. Rani, O., and S. Shivpuri: An Algorithm for Linear Fractional Functional Programming Problems.Zeitschrift für Angewandte Mathematik und Mechanik 57, 1977, 75–80.Google Scholar
  423. Reichmann, T., und L. Lachnit: Planung, Steuerung, und Kontrolle mit Hilfe von Kennzahlen.Zeitschrift für betriebswirtschaftliche Forschung 28, 1976, 705–723.Google Scholar
  424. Reinhardt, H.E.: A Maximization Problem Suggested by Baker vs. Carr.American Mathematics Monthly 73, 1966, 1069–1073.Google Scholar
  425. Reiss, S.P.: Rational SearchInformation Processing Letters 8, 1979, 89–90.Google Scholar
  426. Rhode, P.: Verfahren zur ganzzahligen linearen Quotientenprogrammierung.Diplomarbeit, Köln, 1978.Google Scholar
  427. Rios, S., and F.J. Giron: The Portfolio Selection Problem when the Returns Have Stable Distributions (Spanish).Trabajos de Estadistica e Investigacion Operativa 26, 1975, 301–318.Google Scholar
  428. Ritter, K.: A Parametric Method for Solving Certain Nonconcave Maximization Problems.Journal of Computer and System Science 1, 1967, 44–54.Google Scholar
  429. Robillard, P.: (0,1) Hyperbolic Programming Problems.Naval Research Logistics Quarterly 18, 1971, 47–57.Google Scholar
  430. Rubinstein, G.S.: Duality in Mathematical Programming and Some Problems of Convex Analysis (Russian).Mathematical Surveys 25, 1970, 171–200.Google Scholar
  431. Rybashov, M.V., and E.E. Dudnikov: Parametric Method of Solving Fractional Programing Problems by Analogue Computers (Russian).Doklady Akademii Nauk SSSR 161, 1965, 1289–1290.Google Scholar
  432. Saipe, A.L.: Solving a (0,1) Hyperbolic Program by Branch and Bound.Naval Research Logistics Quarterly 22, 1975, 497–515.Google Scholar
  433. Šamyrkanov, S.: Solution of a Fractional Quadratic Programming Problem (Russian). Izdat. “Ilm”, Frunze, 1973, 55–65.Google Scholar
  434. Saxena, P.C.: Duality Theorem for Fractional Functional Programming in Complex Space.Portugaliae Mathematica 37, 1978, 87–92.Google Scholar
  435. Saxena, P.C., and S.P. Aggarwal: Parametric Linear Fractional Functional Programming.Economic Computation and Economic Cybernetics Studies and Research 14, 1980, 87–97.Google Scholar
  436. Saxena, P.C., and O. Parkash: On a Discrete Non-Linear Fractional Programming Porblem.National Academy Science Letters — India 3, 1980, 204–205.Google Scholar
  437. Saxena, P.C., and V. Patkar: Linear Fractional Functional Programming in Complex Space.Portugaliae Mathematica 37, 1978, 73–80.Google Scholar
  438. —: Non-Linear Non-Differentiable Fractional Programming in Complex Space.Cahiers du Centre d'Etudes de Recherche Opérationelle 20, 1978, 183–193.Google Scholar
  439. Saxena, P.C., V. Patkar and O. Parkash: A Note on Duality Theory for a Pseudoconvex Functional Programming Problem.National Academy Science Letters — India 2, 1979, 231–232.Google Scholar
  440. —: A Note on an Algorithm for Integer Solution to Linear and Piecewise Linear Programs.Pure and Applied Mathematical Sciences 9, 1979, 31–36.Google Scholar
  441. —: Linear Fractional Functional Programming in Complex Space.Zeitschrift für Angewandte Mathematik und Mechanik 59, 1979, 276–278.Google Scholar
  442. Scaruppe, L.: Die Quotientenoptimierung.Diplomarbeit, Humboldt-Universität Berlin II, Mathematisches Institut, 1967.Google Scholar
  443. Schaible, S.: Beiträge zur quasi-konvexen Programmierung.Doctoral Dissertation, Universität Köln, 1971.Google Scholar
  444. —: Quasi-Convex Optimization in General Real Linear Spaces.ZOR — Zeitschrift für Operations Research 16, 1972, 205–213.Google Scholar
  445. —: Quasiconcave, Strictly Quasiconcave and Pseudoconcave Functions.Operations Research Verfahren 17, 1973, 308–316.Google Scholar
  446. -: Transformationen nichtlinearer Quotientenprogramme in konvexe Programme. In: H. Jacob, et al. (eds.),Proceedings in Operations Research 2, 1973, 351–361.Google Scholar
  447. —: Fractional Programming: Transformations, Duality and Algorithmic Aspects.Technical Report 73-9, Department of Operations Research, Stanford University, Stanford, November 1973.Google Scholar
  448. —: Maximization of Quasiconcave Quotients and Products of Finitely Many Functionals.Cahiers du Centre d'Etudes de Recherche Opérationelle 16, 1974, 45–53.Google Scholar
  449. —: Parameter-Free Convex Equivalent and Dual Programs of Fractional Programming Problems.ZOR — Zeitschrift für Operations Research 18, 1974, 187–196.Google Scholar
  450. —: Nonlinear Fractional Programming.Operations Research Verfahren 19, 1974, 109–115.Google Scholar
  451. —: Marginalwerte in der Quotientenprogrammierung.Zeitschrift für Betriebswirtschaft 45, 1975, 649–658.Google Scholar
  452. —: A Note on 'Quadratic Fractional Functional Programming by S.P. Aggarwal.Cahiers du Centre d'Etudes de Recherche Opérationelle 17, 1975, 95–96.Google Scholar
  453. —: Fractional Programming, I. Duality.Management Science 22, 1976, 858–867.Google Scholar
  454. —: Fractional Programming, II. On Dinkelbach's Algorithm.Management Science 22, 1976, 868–873.Google Scholar
  455. —: Duality in Fractional Programming: A Unified Approach.Operations Research 24, 1976, 452–461.Google Scholar
  456. —: Minimization of Ratios.Journal of Optimization Theory and Applications 19, 1976, 347–352.Google Scholar
  457. —: A Note on the Sum of a Linear and Linear-Fractional Function.Naval Research Logistics Quarterly 24, 1977, 691–693.Google Scholar
  458. —: Recent Results in Fractional Programming.Operations Research Verfahren 23, 1977, 271–272.Google Scholar
  459. —: Duality in Ratio Optimization.Operations Research Verfahren 25, 1977, 131–132.Google Scholar
  460. —: Analyse und Anwendungen von Quotientenprogrammen, ein Beitrag zur Planung mit Hilfe der nichtlinearen Programmierung.Mathematical Systems in Economics 42, Hain-Verlag, Meisenheim, 1978.Google Scholar
  461. —: A Survey of Fractional Programming. In: Schaible, S., and W.T. Ziemba, (eds.),Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, 417–440.Google Scholar
  462. —: Fractional Programming — State of the Art. In: Brans, J.P. (ed.),Operational Research '81. North-Holland, Amsterdam, 1981, 479–493.Google Scholar
  463. —: Fractional Programming: Applications and Algorithms.European Journal of Operational Research 7, 1981, 111–120.Google Scholar
  464. —: Simultaneous Optimization of Absolute and Relative Terms. Faculty of Business Administration and Commerce, University of Alberta, Edmonton, January 1982.Google Scholar
  465. —: Bicriteria Quasiconcave Programs. Faculty of Business Administration and Commerce, University of Alberta, Edmonton, March 1982.Google Scholar
  466. -: Fractional Programming.ZOR — Zeitschrift für Operations Research 27 (1), to appear in February 1983.Google Scholar
  467. Schaible, S., and T. Lowe: A Note on a Material Control Problem. Krannert Graduate School of Management, Purdue University, April 1982.Google Scholar
  468. Schaible, S., and T. Ibaraki: Fractional Programming (Invited Review).European Journal of Operational Research, to appear.Google Scholar
  469. Schaible, S., and W.T. Ziemba: On the Concavity of the Sum of Lognormal is Lognormal Approximation in Portfolio Theory. Western Management Science Institute, University of California, Los Angeles, 1982.Google Scholar
  470. Schaible, S., and W.T. Ziemba (eds.):Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981.Google Scholar
  471. Schroeder, R.G.: Linear Programming Solutions to Ratio Games.Operations Research 18, 1970, 300–305.Google Scholar
  472. —: Resource Planning in University Management by Goal Programming.Operations Research 22, 1974, 700–710.Google Scholar
  473. Scott, H.C., and T.R. Jefferson: Fractional Programming Duality via Geometric Programming Duality.Journal of Australian Mathematical Society Series B. 21, 1980, 398–401.Google Scholar
  474. Seelbach, H.: Rentabilitätsmaximierung bei variablem Eigenkapital.Zeitschrift für Betriebswirtschaft 38, 1968, 237–256.Google Scholar
  475. Sengupta, J.K.:Stochastic Programming, Methods and Applications. North-Holland, Amsterdam, 1972.Google Scholar
  476. Seshan, C.R.: On Duality in Linear Fractional Programming.Proceedings of the Indian Academy of Sciences — Mathematical Sciences 89, 1980, 35–42.Google Scholar
  477. —: An Algorithm for Ranking the Extreme Points for a Linear Fractional Objective Function.Journal of the Indian Institute of Science Section B — Physical and Chemical Series 62, 1980, 119–121.Google Scholar
  478. Seshan, C.R., and V.G. Tikekar: Algorithms for Integer Fractional Programming.Journal of the Indian Institute of Science Section B — Physical and Chemical Series 62, 1980, 9–16.Google Scholar
  479. Shapley, L.S.: Stochastic Games.Proceedings of the National Academy of Sciences 39, 1953, 1095–1100.Google Scholar
  480. Sharma, I.C.: Feasible Direction Approach to Fractional Programming Problems.Opsearch 4, 1967, 61–72.Google Scholar
  481. —: Transportation Technique in Non-Linear Fractional Programming.Trabajos de Estadistica y de Investigacion Operativa 24, 1973, 131–139.Google Scholar
  482. Sharma, I.C., and K. Swarup: On Duality in Linear Fractional Functional Programming.ZOR — Zeitschrift für Operations Research 16, 1972, 91–100.Google Scholar
  483. Sharma, J.K.: Programming with Fractional Non-Linear Objective Function and Transportation Technique.Revue Roumainde de Mathématiques Pures et Appliquées 23, 1978, 1227–1234.Google Scholar
  484. —: Extensions and Special Cases of Transportation Problem: A Survey.Indian Journal of Pure and Applied Mathematics 9, 1978, 928–940.Google Scholar
  485. Sharma, J.K., A.K. Gupta and M.P. Gupta: Extension of Simplex Technique for Solving Fractional Programming Problem.Indian Journal of Pure and Applied Mathematics 11, 1980, 961–968.Google Scholar
  486. Sharma, J.K., and K. Swarup: Transportation Fractional Programming with Respect to Time.Ricerca Operativa 7, 1977, 458–459.Google Scholar
  487. Shivpuri, S., and S.S. Chadha: Multiparametric Linear Fractional Functional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 20, 1978, 103–108.Google Scholar
  488. Shukla, D.P., and P.K. Kanchan: Sum of Linear and Linear Fractional Programming.Acta Ciencia Indica 4, 1978, 199–201.Google Scholar
  489. Shvartsman, A.P.: An Algorithm of Fractional Linear Programming (Russian).Ekonomicheskie i Matematicheskie Metody (USSR) 1, 1965, 558–566.Google Scholar
  490. Singh, C.: Optimality Conditions in Fractional Programming.Journal of Optimization Theory and Applications 33, 1981, 287–294.Google Scholar
  491. Sinha, S.M., and V. Wadhwa: Programming with a Special Class of Nonlinear Functionals.Unternehmensforschung 14, 1970, 215–219.Google Scholar
  492. Smyreva, N.V.: An Algorithm for a Parametric Linear-Fractional Programming Problem (Russian).Optimizacija 14, 1974, 83–102.Google Scholar
  493. Solomon, D.I.: On a Method in Linear-Fractional Programming with a Block-Diagonal Matrix, (Russian).Izv. Akad, Nauk. Mold. SSR, Ser. Fiz. — Tekh. Mat. Nauk 3, 1979, 68–70.Google Scholar
  494. —: On a Certain Procedure to Transform Mathematical Programming Problems Having Connected Constraints and Variables (Russian).Matematicheskie Issledovaniya 52, 1979, 199–205.Google Scholar
  495. —: Generalized Linear Fractional Programming Problems (Russian).Matematičeskie Issledovaniya 52, 1979, 206–215.Google Scholar
  496. Soyster, A.L., and B. Lev: An Interpretation of Fractional Objectives in Goal Programming as Related to Papers by Awerbuch, et al., and Hannan.Management Science 24, 1978, 1546–1549.Google Scholar
  497. Sriram, M., and W.F. Stevens: An Example of the Application of Nonlinear Programming to Chemical-Process Optimization.Operations Research 21, 1973, 296–304.Google Scholar
  498. Stancu-Minasian, I.M.: A Three-Dimensional Transportation Problem with a Special Structured Objective Function.Bulletin Mathematique 18, 1974, 385–397.Google Scholar
  499. —: Asupra Problemei lui Kataoka.Studii si Cercetari Matematice 28, 1976, 95–111.Google Scholar
  500. -:On Stochastic Programming with Multiple Objective Functions.Proceedings of the 5th Conference on Probability Theory, Brasov 1975, 1977, 429–436.Google Scholar
  501. —: On the Transportation Problem with Multiple Objective Functions.Bull. Math. Soc. Sci. Math., R.S.R., u. Ser. 22 (70), 1978, 315–328.Google Scholar
  502. —: On a Class of Non-Linear Fractional Programming Problems.Revue Roumaine de Mathématiques Pures et Appliquées 23, 1978, 285–290.Google Scholar
  503. —: Applications of the Fractional Programming.Economic Computation and Economic Cybernetics Studies and Research 14, 1980, 69–86.Google Scholar
  504. —: Bibliography of Fractional Programming 1960–1976.Pure and Applied Mathematika Sciences 13, 1981, 35–69.Google Scholar
  505. Suppe, C.: Hyperbolische Optimierungsprobleme mit Homogenen Funktionen.Ekonomicko-Mathematicky Obzor 12, 1976, 438–443.Google Scholar
  506. Swarup, K.: Some Aspects of Linear Fractional Functionals Programming.Australian Journal of Statistics 7, 1965, 90–104.Google Scholar
  507. —: Linear Fractional Functionals Programming.Operations Research 13, 1965, 1029–1036.Google Scholar
  508. —: Programming with Quadratic Fractional Functionals.Opsearch 2, 1965, 23–30.Google Scholar
  509. —: Fractional Programming with Nonlinear Constraints.Zeitschrift für Angewandte Mathematik und Mechanik 46, 1966, 468–469.Google Scholar
  510. -: Transportation Technique in Linear Fractional Programming.Journal of Royal Naval Scientific Service, 1966, 256–260.Google Scholar
  511. —: Some Properties of Fractional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 9, 1967, 82–86.Google Scholar
  512. —: Some Aspects of Duality in Fractional Programming.Zeitschrift für Angewandte Mathematik und Mechanik 47, 1967, 204–205.Google Scholar
  513. —: On Varying all the Parameters in a Linear Fractional Functionals Programming.Metrika 13, 1968, 196–205.Google Scholar
  514. —: Fractional Programming.Mathematical Student 36, 1968, 58–62.Google Scholar
  515. —: Duality in Fractional Programming.Unternehmensforschung 12, 1968, 106–112.Google Scholar
  516. —: Duality for Transportation Problems in Fractional Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 10, 1968, 46–54.Google Scholar
  517. —: Upper Bound Problem in Linear Fractional Functionals Programming.Metrika 15, 1970, 81–85.Google Scholar
  518. —: Some Aspects of Fractional Programming.Matematichki Vesnik n. Ser. 9 (24), 1972, 97–100.Google Scholar
  519. —: On Duality in Nonlinear Fractional Programming Problems.Zeitschrift für Angewandte Mathematik und Mechanik 54, 1974, 734.Google Scholar
  520. Swarup, K., and M.K. Bedi: Linear Fractional Functionals Programming with Absolute-Value Fractional Functionals.Cahiers du Centre d'Etudes de Recherche Opérationelle 18, 1976, 367–375.Google Scholar
  521. Swarup, K., and I.C. Sharma: Programming with Linear Fractional Functionals in Complex Space.Cahiers du Centre d'Etudes de Recherche Opérationelle 12, 1970, 103–109.Google Scholar
  522. —: A Primal-Like Algorithm for (0,1) Integer Fractional Programming Problem.Trabajos de Estadishica y de Investigacion Operativa XXIV, 1973, 123–136.Google Scholar
  523. Taha, H.A.: An Algorithm for Zero-One Fractional Programming.AIIE Transactions 7, 1975, 29–34.Google Scholar
  524. Tammer, E.-C.: Dualität und Stabilität in der hyperbolischen Optimierung.Dissertation (A) Humboldt-Universität Berlin, Sektion Mathematik, 1974.Google Scholar
  525. —: Dualitätstheorie für hyperbolische und stückweise-lineare konvexe Optimierungs-probleme.Mathematische Operationenforschung und Statistik 5, 1974, 93–108.Google Scholar
  526. —: Parametrische hyperbolische Optimierungsprobleme mit Parametern in der Ziel-funktion.Mathematische Operationsforschung und Statistik Series Optimization 8, 1977, 207–225.Google Scholar
  527. Teterev, A.G.: A Certain Generalization of Linear and Fractional-Linear Programming (Russian).Ekonomika i Matematičeskie Metody 5, 1969, 440–447; English translation inMatekon 6, 1970, 246–259.Google Scholar
  528. Tigan, S.: On A Certain Problem of Nonlinear Fractional Programming (Roumanian).Revista de Analiza Numerica si Teoria Aproximatiei 1, 1972, 215–226.Google Scholar
  529. —: Sur une Méthode Pour la Résolution d'un Problème d'Optimisation Fractionaire par Segments.Revue d'Analyse Numérique et de la Théorie de l'Approximation 4, 1975, 87–97.Google Scholar
  530. —: Sur le Probleme de la Programmation Vectorielle Fractionnaire.Revue d'Analyse Numérique et de la Théorie de l'Approximation 4, 1975, 99–103.Google Scholar
  531. —: Remarques sur Certains Problemes de Programmation Pseudo-Lineaire par Morceaux.Rev. Anal. Numer. Theor. Approximation 9, 1980, 129–132.Google Scholar
  532. Tobin, J.: Liquidity Preference as Behavior Towards Risk.Review of Economic Studies 26, 1958, 65–86.Google Scholar
  533. Vajda, S.:Problems in Linear and Non-Linear Programming. C. Griffin and Co., London, 1975.Google Scholar
  534. Varma, G.K.: Some Aspects of Parametric Linear Fractional Programming.Journal of the Indian Statistical Association 7, 1969, 162–167.Google Scholar
  535. —: General Parametric Linear Fractional Programming.Metrika 19, 1972, 11–17.Google Scholar
  536. —: On Parametric Linear Fractional Functionals Programming.Trabajos Estadistica y de Investigacion Operativa 23, 1972, 149–157.Google Scholar
  537. Vogel, W.:Vektoroptimierung in Produkträumen. Hain-Verlag, Meisenheim 1977.Google Scholar
  538. Wadhwa, V.: Programming with Separable Fractional Functionals.Journal of Mathematical Sciences 4, 1969, 51–60.Google Scholar
  539. —: Linear Fractional Programs with Variable Coefficients.Cahiers du Centre d'Etudes de Recherche Opérationelle 14, 1972, 223–232.Google Scholar
  540. —: Parametric Linear Fractional Programming.SCIMA, Journal of Management Science and Applied Cybernetics 3, 1974, 21–29.Google Scholar
  541. Wagner, H.M.:Principles of Operations Research, with Applications to Management Decisions. 2nd Ed., Prentice-Hall, Englewood-Cliffs, N.J., 1975.Google Scholar
  542. Wagner, H.M., and J.S.C. Yuan: Algorithmic Equivalence in Linear Fractional Programming.Management Science 14, 1968, 301–306.Google Scholar
  543. Warburton, A.R.: Topics in Multicriteria Optimization.Ph.D. Thesis, University of British Columbia, Vancouver, 1981.Google Scholar
  544. Wdowiak, J.: A Discrete Linear Fractional Programming Problem (Polish).Przeglad Statystyczny 24, 1977, 483–497.Google Scholar
  545. —: A Discrete Linear Fractional Programming Problem II (Polish).Przeglad Statystyczny 25, 1978, 133–140.Google Scholar
  546. Whinston, A.: A Dual Decomposition Algorithm for Quadratic Programming.Cahiers du Centre d'Etudes de Recherche Opérationelle 6, 1964, 188–201.Google Scholar
  547. Wilde, F.: Bestimmung eines optimalen Produktionsprogramms mit maximaler grundfondsbezogener Rentabilität mit Hilfe der hyperbolischen Optimierung.Thesis, Wirtschaftswissenschaftliche Fakultät der Humboldt-Universität zu Berlin, 1968.Google Scholar
  548. Williams, H.P.: Experiments in the Formulation of Integer Programming Problems.Mathematical Programming Studies 2, 1974, 180–197.Google Scholar
  549. Wolkowicz, H.: Bounds for the Kantorovich Ratio. Dept. of Mathematics, University of Alberta, April 1981.Google Scholar
  550. Zemel, E.: On Search over Rationals.Operations Research Letters 1, 1981, 34–38.Google Scholar
  551. Ziemba, W.T.: Choosing Investment Portfolios when the Returns have a Stable Distribution. In: Hammer, P.L., and Zoutendijk, G. (eds.),Mathematical Programming in Theory and Practice. North-Holland, Publishing Company, Amsterdam, 1974, 443–482.Google Scholar
  552. Ziemba, W.T., C. Parkan and R. Brooks-Hill: Calculation of Investment Portfolios with Risk Free Borrowing and Lending.Management Sience 21, 1974, 209–222.Google Scholar
  553. Ziemba, W.T., and R.G. Vickson (eds.):Stochastic Optimization Models in Finance. Academic Press, New York, 1975.Google Scholar
  554. Zionts, S.: Programming with Linear Fractional Functionals.Naval Research Logistics Quarterly 15, 1968, 449–451.Google Scholar

Copyright information

© Physica-Verlag 1982

Authors and Affiliations

  • S. Schaible
    • 1
  1. 1.Department of Finanace and Management Science, Faculty of BusinessUniversity of AlbertaEdmontonCanada

Personalised recommendations