Skip to main content
Log in

Why does the cardiac force-velocity relationship not follow a Hill hyperbola? Possible implications of feedback loops involved in cardiac excitation-contraction coupling

Zum nichthyperbolischen Verlauf der Kraft-Geschwindigkeit-Beziehung der Herzmuskels. Rückwirkmechanismen im Bereich der elektromechanischen Kopplung und ihre mögliche Bedeutung

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

  1. 1.

    If cardiac force-velocity (PV) relationships are determined in a rhythmically beating isolated preparation by progressively changing afterloads, the PV curves obtained exhibit a characteristic nonhyperbolic shape with an upward convexity in the force domain close to Po. It was suggested by others that this might be due to contractile element (CE) shortening against series elastic component (SEC) and/or the early decay of the active state at isometric peak tension.

  2. 2.

    The present investigation performed in isolated cat papillary muscles demonstrates that neither CE shortening against SEC nor the variation of the intensity of the active state canfully account for the nonhyperbolic shape of cardiac PV curves.

  3. 3.

    On the other hand large parts of the remaining deviation could be eliminated if the “progressive loading sequence” (PLS) was replaced for an “interpolated loading sequence” (ILS). Here, the muscle contracts under steady state conditions either isometrically or isotonically (zero load). Single afterloaded test contractions are interpolated after every 10th beat.

  4. 4.

    It is concluded that the nonhyperbolic shape of cardiac PV curves, determined by progressively changing afterloads, is the expression of at least four factors: (i) the existence of displacement dependent variation of excitationcontraction coupling (including the contraction-excitation-contraction recoupling loop), (ii) CE shortening against non CE bound SEC, (iii) a variable active state and (iiii) a fourth unknown mechanism.

Zusammenfassung

  1. 1.

    Kraft-Geschwindigkeit-(PV-)Beziehungen des Herzmuskels, die in einem rhythmisch schlagenden isolierten Präparat durch stetig wachsende oder fallende Nachbelastungen bestimmt werden, zeigen charakteristischerweise einen nichthyperbolischen Verlauf mit einer nach oben gerichteten Konvexität im Kraftbereich nahe Po. Verschiedene Autoren suchten den Grund dazu in der Verkürzung des kontraktilen Elementes (CE) gegen das serienelastische Element (SE) und/oder in dem frühen Abfall des „active state” vor dem isometrischen Spannungsgipfel.

  2. 2.

    Die vorliegenden Untersuchungen wurden an isolierten Katzenpapillarmuskeln gemacht und zeigen, daß weder die CE Verkürzung gegen das SE noch die Intensitätsvariation des „active state”voll für den nicht hyperbolischen Verlauf der kardialen PV Kurven verantwortlich zu machen sind.

  3. 3.

    Andererseits läßt sich ein beträchtlicher Teil der Restabweichung dann aufheben, wenn man statt einer „progressiven Belastungssequenz” (PLS) eine „interpolierte Belastungssequenz” (ILS) wählt. In diesem Fall kontrahiert sich der Muskel entweder unter isometrischen oder (nullbelasteten) isotonen Steadystate-Bedingungen. Einzelne nachbelastete Testkontraktionen werden dann nach jedem 10. Schlag interpoliert.

  4. 4.

    Es wird die Schlußfolgerung gezogen, daß der nicht hyperbolische Verlauf der kardialen PV-Kurven, die durch ein fortschreitend sich änderndes Nachbelastungsprogramm bestimmt werden, Ausdruck von mindestens vier Mechanismen ist: a) der Existenz einer längenabhängigen Variation der elektromechanischen Koppelung unter Einschluß des Kontraktions-Erregungs-Kontraktions-Rückkoppelungskreises, b) der Verkürzung des kontraktilen Elements gegen nicht CE-gebundene Serienelastizität, c) der Variabilität des „active state” und d) eines vierten, unbekannten Mechanismus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, B. C., F. H. M. Mommaerts: A study of inotropic mechanisms in the papillary muscle preparation. J. gen. Physiol.42, 533–551 (1959).

    Article  PubMed  Google Scholar 

  2. Allen, D. G., B. R. Jewell, J. W. Murray: The contribution of activation processes to the length-tension relation of cardiac muscle. Nature (Lond.)248, 606–607 (1974).

    Article  Google Scholar 

  3. Antoni, H., R. Jacob, R. Kaufmann: Mechanische Reaktioan des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotentialdauer durch konstante Gleichstromimpulse. Pflüg. Arch. ges. Physiol.306, 33–57 (1969).

    Article  Google Scholar 

  4. Brady, A. J.: Time and displacement dependence of cardiac contractility: Problems in defining the active state and force-velocity relations. Fed. Proc.24, 1410–1420 (1965).

    PubMed  Google Scholar 

  5. Brady, A. J.: Onset of contracitility in cardiac muscle. J. Physiol.184, 560–580 (1966).

    PubMed  Google Scholar 

  6. Brutsaert, D. L.: The force-velocity-length-time interrelation of cardiac muscle. The physiological Basis of Starling's law of the heart. Ciba Foundation, Symposium 24. ASP (Amsterdam 1974).

  7. Brutsaert, D. L., E. H. Sonnenblick: Force-velocity-length-time relations of the contractile elements in heart muscle of the cat. Circulat. Res.24, 137–149 (1969).

    PubMed  Google Scholar 

  8. Brutsaert, D. L., E. H. Sonnenblick: The early onset of maximum velocity of shortening in heart muscle of the cat. Pflüg. Arch. ges. Physiol.324, 91–99 (1971).

    Article  Google Scholar 

  9. Brutsaert, D. L., E. H. Sonneblick: Nature of the force-velocity relation in heart muscle. Cardiovasc. Res. Supp.1, 18–33 (1971).

    Google Scholar 

  10. Brutsaert, D. L., V. A. Claes, E. H. Sonneblick: Velocity of shortening of unloaded heart muscle and the length-tension relation. Circulat. Res.29, 63–75 (1972).

    Google Scholar 

  11. Donald, T. C., K. Unnoppetchara, D. Peterson, L. L. Hefner: Effect of initial muscle length on Vmax in isotonic contraction of cardiac muscle. Amer. J. Physiol.223, 262–267 (1972).

    PubMed  Google Scholar 

  12. Edman, K. A. P.: Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J. Physiol.246, 255–275 (1975).

    PubMed  Google Scholar 

  13. Edman, K. A. P., E. Nilsson: Relationships between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand.85, 488–500 (1972).

    PubMed  Google Scholar 

  14. Gülch, R. W., R. Jacob: Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady-state conditions. Pflüg. Arch. ges. Physiol.355, 331–346 (1974).

    Google Scholar 

  15. Gülch, R. W.: A critical analysis of myocardial force-velocity relations obtained from damped quick-release experiments. Basic. Res. Cardiol.69, 32–46 (1974).

    Article  PubMed  Google Scholar 

  16. Hennekes, R., R. Kaufmann, M. Lab, R. Steiner: Feedback loops involved in cardiac excitation-contraction coupling: Evidence for two different pathways. J. Molec. Cell. Cardiol.9, 699–713 (1977).

    Google Scholar 

  17. Hill, A. V.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. London76 B, 136–195 (1938).

    Google Scholar 

  18. Jewell, B. R., J. M. Rovell: Influence of previous mechanical events on the contractility of isolated cat papillary muscle. J. Physiol.235, 715–740 (1973).

    PubMed  Google Scholar 

  19. Kaufmann, R. L., M. J. Lab, R. Hennekes, H. Krause: Feedback interaction of mechanical and electrical events in the isolated ventricular myocardium (cat papillary muscle). Pflüg. Arch. ges. Physiol.324, 100–123 (1971).

    Article  Google Scholar 

  20. Kaufmann, R. L., R. M. Bayer, C. Harnasch: Autoregulation of contractility in the myocardial cell. Pflüg. Arch. ges. Physiol.332, 96–116 (1972).

    Article  Google Scholar 

  21. Krueger, J. W., G. H. Pollack: Myocardial sarcomere dynamics during isometric contraction. J. Physiol.251, 627–643 (1975).

    PubMed  Google Scholar 

  22. McLaughlin, R. J., E. H. Sonnenblick: Time behaviour of series elasticity in cardiac muscle. Circulat. Res.34, 798–811 (1974).

    PubMed  Google Scholar 

  23. Nilsson, E.: Influence of muscle length on the mechanical parameters of myocardial contraction. Acta Physiol. Scand.85, 1–23 (1972).

    PubMed  Google Scholar 

  24. Noble, M. I. M., T. E. Bowen, L. L. Hefner: Force-velocity relationship of cat cardiac muscle, studied by isotonic and quick-release techniques. Circulat. Res.20, 112–123 (1969).

    Google Scholar 

  25. Parmley, W. W., E. H. Sonnenblick: Series elasticity in heart muscle. Circulat. Res.20, 112–123 (1967).

    PubMed  Google Scholar 

  26. Parmley, W. W., D. L. Brutsaert, E. H. Sonnenblick: Effects of altered loading on contractile events in isolated cat papillary muscle. Circulat. Res.24, 521–532 (1969).

    PubMed  Google Scholar 

  27. Pollack, G. H., L. L. Huntsman: Sarcomere length-active force relations in living mammalian cardiac muscle. Amer. J. Physiol.227, 383–389 (1974).

    PubMed  Google Scholar 

  28. Sonnenblick, E. H.: Implications of muscle mechanics in the heart. Fed. Proc.21, 975–990 (1962).

    PubMed  Google Scholar 

  29. Sonnenblick, E. H.: Series elastic and contractile elements in heart muscle: Changes in muscle length. Amer. J. Physiol.207, 1330–1338 (1964).

    PubMed  Google Scholar 

  30. Wood, E. H., R. L. Hepner, S. Weidmann: Inotropic effects of electric currents. Circulat. Res.24, 409–445 (1969).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 figures and 1 table

This work has been supported in part by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 30, Kardiologie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennekes, R., Kaufmann, R. & Steiner, R. Why does the cardiac force-velocity relationship not follow a Hill hyperbola? Possible implications of feedback loops involved in cardiac excitation-contraction coupling. Basic Res Cardiol 73, 47–67 (1978). https://doi.org/10.1007/BF01914655

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01914655

Keywords

Navigation